blob: 588efccc6fc13e33e74d623d6abfb0e3945f82fe [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// **** WAVPACK **** //
// Hybrid Lossless Wavefile Compressor //
// Copyright (c) 1998 - 2005 Conifer Software. //
// All Rights Reserved. //
// Distributed under the BSD Software License (see license.txt) //
////////////////////////////////////////////////////////////////////////////
// pack.c
// This module actually handles the compression of the audio data, except for
// the entropy coding which is handled by the words? modules. For efficiency,
// the conversion is isolated to tight loops that handle an entire buffer.
#include "wavpack.h"
#include <string.h>
// This flag provides faster encoding speed at the expense of more code. The
// improvement applies to 16-bit stereo lossless only.
//////////////////////////////// local tables ///////////////////////////////
// These two tables specify the characteristics of the decorrelation filters.
// Each term represents one layer of the sequential filter, where positive
// values indicate the relative sample involved from the same channel (1=prev),
// 17 & 18 are special functions using the previous 2 samples, and negative
// values indicate cross channel decorrelation (in stereo only).
static const signed char default_terms [] = { 18,18,2,3,-2,0 };
static const signed char high_terms [] = { 18,18,2,3,-2,18,2,4,7,5,3,6,0 };
static const signed char fast_terms [] = { 17,17,0 };
///////////////////////////// executable code ////////////////////////////////
// This function initializes everything required to pack WavPack bitstreams
// and must be called BEFORE any other function in this module.
void pack_init (WavpackContext *wpc)
{
WavpackStream *wps = &wpc->stream;
ulong flags = wps->wphdr.flags;
struct decorr_pass *dpp;
const signed char *term_string;
int ti;
wps->sample_index = 0;
CLEAR (wps->decorr_passes);
if (wpc->config.flags & CONFIG_HIGH_FLAG)
term_string = high_terms;
else if (wpc->config.flags & CONFIG_FAST_FLAG)
term_string = fast_terms;
else
term_string = default_terms;
for (dpp = wps->decorr_passes, ti = 0; term_string [ti]; ti++)
if (term_string [ti] >= 0 || (flags & CROSS_DECORR)) {
dpp->term = term_string [ti];
dpp++->delta = 2;
}
else if (!(flags & MONO_FLAG)) {
dpp->term = -3;
dpp++->delta = 2;
}
wps->num_terms = dpp - wps->decorr_passes;
init_words (wps);
}
// Allocate room for and copy the decorrelation terms from the decorr_passes
// array into the specified metadata structure. Both the actual term id and
// the delta are packed into single characters.
static void write_decorr_terms (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms;
struct decorr_pass *dpp;
char *byteptr;
byteptr = wpmd->data = wpmd->temp_data;
wpmd->id = ID_DECORR_TERMS;
for (dpp = wps->decorr_passes; tcount--; ++dpp)
*byteptr++ = ((dpp->term + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0);
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Allocate room for and copy the decorrelation term weights from the
// decorr_passes array into the specified metadata structure. The weights
// range +/-1024, but are rounded and truncated to fit in signed chars for
// metadata storage. Weights are separate for the two channels
static void write_decorr_weights (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms;
struct decorr_pass *dpp;
signed char *byteptr;
byteptr = wpmd->data = wpmd->temp_data;
wpmd->id = ID_DECORR_WEIGHTS;
for (dpp = wps->decorr_passes; tcount--; ++dpp) {
dpp->weight_A = restore_weight (*byteptr++ = store_weight (dpp->weight_A));
if (!(wps->wphdr.flags & MONO_FLAG))
dpp->weight_B = restore_weight (*byteptr++ = store_weight (dpp->weight_B));
}
wpmd->byte_length = byteptr - (signed char *) wpmd->data;
}
// Allocate room for and copy the decorrelation samples from the decorr_passes
// array into the specified metadata structure. The samples are signed 32-bit
// values, but are converted to signed log2 values for storage in metadata.
// Values are stored for both channels and are specified from the first term
// with unspecified samples set to zero. The number of samples stored varies
// with the actual term value, so those must obviously be specified before
// these in the metadata list. Any number of terms can have their samples
// specified from no terms to all the terms, however I have found that
// sending more than the first term's samples is a waste. The "wcount"
// variable can be set to the number of terms to have their samples stored.
static void write_decorr_samples (WavpackStream *wps, WavpackMetadata *wpmd)
{
int tcount = wps->num_terms, wcount = 1, temp;
struct decorr_pass *dpp;
uchar *byteptr;
byteptr = wpmd->data = wpmd->temp_data;
wpmd->id = ID_DECORR_SAMPLES;
for (dpp = wps->decorr_passes; tcount--; ++dpp)
if (wcount) {
if (dpp->term > MAX_TERM) {
dpp->samples_A [0] = exp2s (temp = log2s (dpp->samples_A [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_A [1] = exp2s (temp = log2s (dpp->samples_A [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
dpp->samples_B [0] = exp2s (temp = log2s (dpp->samples_B [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_B [1] = exp2s (temp = log2s (dpp->samples_B [1]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
}
else if (dpp->term < 0) {
dpp->samples_A [0] = exp2s (temp = log2s (dpp->samples_A [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
dpp->samples_B [0] = exp2s (temp = log2s (dpp->samples_B [0]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
else {
int m = 0, cnt = dpp->term;
while (cnt--) {
dpp->samples_A [m] = exp2s (temp = log2s (dpp->samples_A [m]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
if (!(wps->wphdr.flags & MONO_FLAG)) {
dpp->samples_B [m] = exp2s (temp = log2s (dpp->samples_B [m]));
*byteptr++ = temp;
*byteptr++ = temp >> 8;
}
m++;
}
}
wcount--;
}
else {
CLEAR (dpp->samples_A);
CLEAR (dpp->samples_B);
}
wpmd->byte_length = byteptr - (uchar *) wpmd->data;
}
// Allocate room for and copy the configuration information into the specified
// metadata structure. Currently, we just store the upper 3 bytes of
// config.flags and only in the first block of audio data. Note that this is
// for informational purposes not required for playback or decoding (like
// whether high or fast mode was specified).
static void write_config_info (WavpackContext *wpc, WavpackMetadata *wpmd)
{
char *byteptr;
byteptr = wpmd->data = wpmd->temp_data;
wpmd->id = ID_CONFIG_BLOCK;
*byteptr++ = (char) (wpc->config.flags >> 8);
*byteptr++ = (char) (wpc->config.flags >> 16);
*byteptr++ = (char) (wpc->config.flags >> 24);
wpmd->byte_length = byteptr - (char *) wpmd->data;
}
// Pack an entire block of samples (either mono or stereo) into a completed
// WavPack block. It is assumed that there is sufficient space for the
// completed block at "wps->blockbuff" and that "wps->blockend" points to the
// end of the available space. A return value of FALSE indicates an error.
// Any unsent metadata is transmitted first, then required metadata for this
// block is sent, and finally the compressed integer data is sent. If a "wpx"
// stream is required for floating point data or large integer data, then this
// must be handled outside this function. To find out how much data was written
// the caller must look at the ckSize field of the written WavpackHeader, NOT
// the one in the WavpackStream.
int pack_start_block (WavpackContext *wpc)
{
WavpackStream *wps = &wpc->stream;
WavpackMetadata wpmd;
memcpy (wps->blockbuff, &wps->wphdr, sizeof (WavpackHeader));
((WavpackHeader *) wps->blockbuff)->ckSize = sizeof (WavpackHeader) - 8;
((WavpackHeader *) wps->blockbuff)->block_index = wps->sample_index;
((WavpackHeader *) wps->blockbuff)->block_samples = 0;
((WavpackHeader *) wps->blockbuff)->crc = 0xffffffff;
if (wpc->wrapper_bytes) {
wpmd.id = ID_RIFF_HEADER;
wpmd.byte_length = wpc->wrapper_bytes;
wpmd.data = wpc->wrapper_data;
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
wpc->wrapper_data = NULL;
wpc->wrapper_bytes = 0;
}
write_decorr_terms (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_decorr_weights (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_decorr_samples (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
write_entropy_vars (wps, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
if ((wps->wphdr.flags & INITIAL_BLOCK) && !wps->sample_index) {
write_config_info (wpc, &wpmd);
copy_metadata (&wpmd, wps->blockbuff, wps->blockend);
free_metadata (&wpmd);
}
bs_open_write (&wps->wvbits, wps->blockbuff + ((WavpackHeader *) wps->blockbuff)->ckSize + 12, wps->blockend);
return TRUE;
}
static void decorr_stereo_pass (struct decorr_pass *dpp, long *bptr, long *eptr, int m);
static void decorr_stereo_pass_18 (struct decorr_pass *dpp, long *bptr, long *eptr);
static void decorr_stereo_pass_17 (struct decorr_pass *dpp, long *bptr, long *eptr);
static void decorr_stereo_pass_m2 (struct decorr_pass *dpp, long *bptr, long *eptr);
int pack_samples (WavpackContext *wpc, long *buffer, ulong sample_count)
{
WavpackStream *wps = &wpc->stream;
ulong flags = wps->wphdr.flags;
struct decorr_pass *dpp;
long *bptr, *eptr;
int tcount, m;
ulong crc;
if (!sample_count)
return TRUE;
eptr = buffer + sample_count * ((flags & MONO_FLAG) ? 1 : 2);
m = ((WavpackHeader *) wps->blockbuff)->block_samples & (MAX_TERM - 1);
crc = ((WavpackHeader *) wps->blockbuff)->crc;
/////////////////////// handle lossless mono mode /////////////////////////
if (!(flags & HYBRID_FLAG) && (flags & MONO_FLAG))
for (bptr = buffer; bptr < eptr;) {
long code;
crc = crc * 3 + (code = *bptr);
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) {
long sam;
if (dpp->term > MAX_TERM) {
if (dpp->term & 1)
sam = 2 * dpp->samples_A [0] - dpp->samples_A [1];
else
sam = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = code;
}
else {
sam = dpp->samples_A [m];
dpp->samples_A [(m + dpp->term) & (MAX_TERM - 1)] = code;
}
code -= apply_weight_i (dpp->weight_A, sam);
update_weight (dpp->weight_A, 2, sam, code);
}
m = (m + 1) & (MAX_TERM - 1);
*bptr++ = code;
}
//////////////////// handle the lossless stereo mode //////////////////////
else if (!(flags & HYBRID_FLAG) && !(flags & MONO_FLAG)) {
if (flags & JOINT_STEREO)
for (bptr = buffer; bptr < eptr; bptr += 2) {
crc = crc * 9 + (bptr [0] * 3) + bptr [1];
bptr [1] += ((bptr [0] -= bptr [1]) >> 1);
}
else
for (bptr = buffer; bptr < eptr; bptr += 2)
crc = crc * 9 + (bptr [0] * 3) + bptr [1];
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount-- ; dpp++) {
if (dpp->term == 17)
decorr_stereo_pass_17 (dpp, buffer, eptr);
else if (dpp->term == 18)
decorr_stereo_pass_18 (dpp, buffer, eptr);
else if (dpp->term >= 1 && dpp->term <= 7)
decorr_stereo_pass (dpp, buffer, eptr, m);
else if (dpp->term == -2)
decorr_stereo_pass_m2 (dpp, buffer, eptr);
}
}
send_words (buffer, sample_count, flags, &wps->w, &wps->wvbits);
((WavpackHeader *) wps->blockbuff)->crc = crc;
((WavpackHeader *) wps->blockbuff)->block_samples += sample_count;
wps->sample_index += sample_count;
return TRUE;
}
static void decorr_stereo_pass (struct decorr_pass *dpp, long *bptr, long *eptr, int m)
{
int k = (m + dpp->term) & (MAX_TERM - 1);
long sam;
while (bptr < eptr) {
dpp->samples_A [k] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, (sam = dpp->samples_A [m]));
update_weight (dpp->weight_A, 2, sam, bptr [0]);
bptr++;
dpp->samples_B [k] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_B, (sam = dpp->samples_B [m]));
update_weight (dpp->weight_B, 2, sam, bptr [0]);
bptr++;
m = (m + 1) & (MAX_TERM - 1);
k = (k + 1) & (MAX_TERM - 1);
}
}
static void decorr_stereo_pass_18 (struct decorr_pass *dpp, long *bptr, long *eptr)
{
long sam;
while (bptr < eptr) {
sam = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1;
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam);
update_weight (dpp->weight_A, 2, sam, bptr [0]);
bptr++;
sam = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1;
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_B, sam);
update_weight (dpp->weight_B, 2, sam, bptr [0]);
bptr++;
}
}
static void decorr_stereo_pass_m2 (struct decorr_pass *dpp, long *bptr, long *eptr)
{
long sam_A, sam_B;
for (; bptr < eptr; bptr += 2) {
sam_A = bptr [1];
sam_B = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam_A);
update_weight_clip (dpp->weight_A, 2, sam_A, bptr [0]);
bptr [1] -= apply_weight_i (dpp->weight_B, sam_B);
update_weight_clip (dpp->weight_B, 2, sam_B, bptr [1]);
}
}
static void decorr_stereo_pass_17 (struct decorr_pass *dpp, long *bptr, long *eptr)
{
long sam;
while (bptr < eptr) {
sam = 2 * dpp->samples_A [0] - dpp->samples_A [1];
dpp->samples_A [1] = dpp->samples_A [0];
dpp->samples_A [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_A, sam);
update_weight (dpp->weight_A, 2, sam, bptr [0]);
bptr++;
sam = 2 * dpp->samples_B [0] - dpp->samples_B [1];
dpp->samples_B [1] = dpp->samples_B [0];
dpp->samples_B [0] = bptr [0];
bptr [0] -= apply_weight_i (dpp->weight_B, sam);
update_weight (dpp->weight_B, 2, sam, bptr [0]);
bptr++;
}
}
int pack_finish_block (WavpackContext *wpc)
{
WavpackStream *wps = &wpc->stream;
struct decorr_pass *dpp;
ulong data_count;
int tcount, m;
m = ((WavpackHeader *) wps->blockbuff)->block_samples & (MAX_TERM - 1);
if (m)
for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++)
if (dpp->term > 0 && dpp->term <= MAX_TERM) {
long temp_A [MAX_TERM], temp_B [MAX_TERM];
int k;
memcpy (temp_A, dpp->samples_A, sizeof (dpp->samples_A));
memcpy (temp_B, dpp->samples_B, sizeof (dpp->samples_B));
for (k = 0; k < MAX_TERM; k++) {
dpp->samples_A [k] = temp_A [m];
dpp->samples_B [k] = temp_B [m];
m = (m + 1) & (MAX_TERM - 1);
}
}
flush_word (&wps->w, &wps->wvbits);
data_count = bs_close_write (&wps->wvbits);
if (data_count) {
if (data_count != (ulong) -1) {
uchar *cptr = wps->blockbuff + ((WavpackHeader *) wps->blockbuff)->ckSize + 8;
*cptr++ = ID_WV_BITSTREAM | ID_LARGE;
*cptr++ = data_count >> 1;
*cptr++ = data_count >> 9;
*cptr++ = data_count >> 17;
((WavpackHeader *) wps->blockbuff)->ckSize += data_count + 4;
}
else
return FALSE;
}
return TRUE;
}