| /* |
| Copyright (C) 1996-1997 Id Software, Inc. |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License |
| as published by the Free Software Foundation; either version 2 |
| of the License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| |
| See the GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| */ |
| // mathlib.c -- math primitives |
| |
| #include <math.h> |
| #include "quakedef.h" |
| |
| void Sys_Error (char *error, ...); |
| |
| vec3_t vec3_origin = {0,0,0}; |
| int nanmask = 255<<23; |
| |
| /*-----------------------------------------------------------------*/ |
| |
| #define DEG2RAD( a ) ( a * M_PI ) / 180.0F |
| |
| void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) |
| { |
| float d; |
| vec3_t n; |
| float inv_denom; |
| |
| inv_denom = 1.0F / DotProduct( normal, normal ); |
| |
| d = DotProduct( normal, p ) * inv_denom; |
| |
| n[0] = normal[0] * inv_denom; |
| n[1] = normal[1] * inv_denom; |
| n[2] = normal[2] * inv_denom; |
| |
| dst[0] = p[0] - d * n[0]; |
| dst[1] = p[1] - d * n[1]; |
| dst[2] = p[2] - d * n[2]; |
| } |
| |
| /* |
| ** assumes "src" is normalized |
| */ |
| void PerpendicularVector( vec3_t dst, const vec3_t src ) |
| { |
| int pos; |
| int i; |
| float minelem = 1.0F; |
| vec3_t tempvec; |
| |
| /* |
| ** find the smallest magnitude axially aligned vector |
| */ |
| for ( pos = 0, i = 0; i < 3; i++ ) |
| { |
| if ( fabs( src[i] ) < minelem ) |
| { |
| pos = i; |
| minelem = fabs( src[i] ); |
| } |
| } |
| tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; |
| tempvec[pos] = 1.0F; |
| |
| /* |
| ** project the point onto the plane defined by src |
| */ |
| ProjectPointOnPlane( dst, tempvec, src ); |
| |
| /* |
| ** normalize the result |
| */ |
| VectorNormalizeNoRet( dst ); |
| } |
| |
| |
| void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) |
| { |
| float m[3][3]; |
| float im[3][3]; |
| float zrot[3][3]; |
| float tmpmat[3][3]; |
| float rot[3][3]; |
| int i; |
| vec3_t vr, vup, vf; |
| |
| vf[0] = dir[0]; |
| vf[1] = dir[1]; |
| vf[2] = dir[2]; |
| |
| PerpendicularVector( vr, dir ); |
| CrossProduct( vr, vf, vup ); |
| |
| m[0][0] = vr[0]; |
| m[1][0] = vr[1]; |
| m[2][0] = vr[2]; |
| |
| m[0][1] = vup[0]; |
| m[1][1] = vup[1]; |
| m[2][1] = vup[2]; |
| |
| m[0][2] = vf[0]; |
| m[1][2] = vf[1]; |
| m[2][2] = vf[2]; |
| |
| memcpy( im, m, sizeof( im ) ); |
| |
| im[0][1] = m[1][0]; |
| im[0][2] = m[2][0]; |
| im[1][0] = m[0][1]; |
| im[1][2] = m[2][1]; |
| im[2][0] = m[0][2]; |
| im[2][1] = m[1][2]; |
| |
| memset( zrot, 0, sizeof( zrot ) ); |
| zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; |
| |
| zrot[0][0] = cos( DEG2RAD( degrees ) ); |
| zrot[0][1] = sin( DEG2RAD( degrees ) ); |
| zrot[1][0] = -sin( DEG2RAD( degrees ) ); |
| zrot[1][1] = cos( DEG2RAD( degrees ) ); |
| |
| R_ConcatRotations( m, zrot, tmpmat ); |
| R_ConcatRotations( tmpmat, im, rot ); |
| |
| for ( i = 0; i < 3; i++ ) |
| { |
| dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; |
| } |
| } |
| |
| /*-----------------------------------------------------------------*/ |
| |
| |
| float anglemod(float a) |
| { |
| #if 0 |
| if (a >= 0) |
| a -= 360*(int)(a/360); |
| else |
| a += 360*( 1 + (int)(-a/360) ); |
| #endif |
| a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); |
| return a; |
| } |
| |
| /* |
| ================== |
| BOPS_Error |
| |
| Split out like this for ASM to call. |
| ================== |
| */ |
| void BOPS_Error (void) |
| { |
| Sys_Error ("BoxOnPlaneSide: Bad signbits"); |
| } |
| |
| |
| #if !id386 |
| |
| /* |
| ================== |
| BoxOnPlaneSide |
| |
| Returns 1, 2, or 1 + 2 |
| ================== |
| */ |
| int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p) |
| { |
| float dist1, dist2; |
| int sides; |
| |
| #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this |
| // function |
| // fast axial cases |
| if (p->type < 3) |
| { |
| if (p->dist <= emins[p->type]) |
| return 1; |
| if (p->dist >= emaxs[p->type]) |
| return 2; |
| return 3; |
| } |
| #endif |
| |
| // general case |
| switch (p->signbits) |
| { |
| case 0: |
| dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
| dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
| break; |
| case 1: |
| dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
| dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
| break; |
| case 2: |
| dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
| dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
| break; |
| case 3: |
| dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
| dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
| break; |
| case 4: |
| dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
| dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
| break; |
| case 5: |
| dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
| dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
| break; |
| case 6: |
| dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
| dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
| break; |
| case 7: |
| dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
| dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
| break; |
| default: |
| dist1 = dist2 = 0; // shut up compiler |
| BOPS_Error (); |
| break; |
| } |
| |
| #if 0 |
| int i; |
| vec3_t corners[2]; |
| |
| for (i=0 ; i<3 ; i++) |
| { |
| if (plane->normal[i] < 0) |
| { |
| corners[0][i] = emins[i]; |
| corners[1][i] = emaxs[i]; |
| } |
| else |
| { |
| corners[1][i] = emins[i]; |
| corners[0][i] = emaxs[i]; |
| } |
| } |
| dist = DotProduct (plane->normal, corners[0]) - plane->dist; |
| dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; |
| sides = 0; |
| if (dist1 >= 0) |
| sides = 1; |
| if (dist2 < 0) |
| sides |= 2; |
| |
| #endif |
| |
| sides = 0; |
| if (dist1 >= p->dist) |
| sides = 1; |
| if (dist2 < p->dist) |
| sides |= 2; |
| |
| #ifdef PARANOID |
| if (sides == 0) |
| Sys_Error ("BoxOnPlaneSide: sides==0"); |
| #endif |
| |
| return sides; |
| } |
| |
| #endif |
| |
| |
| void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) |
| { |
| float angle; |
| float sr, sp, sy, cr, cp, cy; |
| |
| angle = angles[YAW] * (M_PI*2 / 360); |
| sy = sin(angle); |
| cy = cos(angle); |
| angle = angles[PITCH] * (M_PI*2 / 360); |
| sp = sin(angle); |
| cp = cos(angle); |
| angle = angles[ROLL] * (M_PI*2 / 360); |
| sr = sin(angle); |
| cr = cos(angle); |
| |
| forward[0] = cp*cy; |
| forward[1] = cp*sy; |
| forward[2] = -sp; |
| right[0] = (-1*sr*sp*cy+-1*cr*-sy); |
| right[1] = (-1*sr*sp*sy+-1*cr*cy); |
| right[2] = -1*sr*cp; |
| up[0] = (cr*sp*cy+-sr*-sy); |
| up[1] = (cr*sp*sy+-sr*cy); |
| up[2] = cr*cp; |
| } |
| |
| int VectorCompare (vec3_t v1, vec3_t v2) |
| { |
| int i; |
| |
| for (i=0 ; i<3 ; i++) |
| if (v1[i] != v2[i]) |
| return 0; |
| |
| return 1; |
| } |
| |
| void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc) |
| { |
| vecc[0] = veca[0] + scale*vecb[0]; |
| vecc[1] = veca[1] + scale*vecb[1]; |
| vecc[2] = veca[2] + scale*vecb[2]; |
| } |
| |
| |
| vec_t _DotProduct (vec3_t v1, vec3_t v2) |
| { |
| return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; |
| } |
| |
| void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) |
| { |
| out[0] = veca[0]-vecb[0]; |
| out[1] = veca[1]-vecb[1]; |
| out[2] = veca[2]-vecb[2]; |
| } |
| |
| void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) |
| { |
| out[0] = veca[0]+vecb[0]; |
| out[1] = veca[1]+vecb[1]; |
| out[2] = veca[2]+vecb[2]; |
| } |
| |
| void _VectorCopy (vec3_t in, vec3_t out) |
| { |
| out[0] = in[0]; |
| out[1] = in[1]; |
| out[2] = in[2]; |
| } |
| |
| void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) |
| { |
| cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
| cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
| cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
| } |
| |
| vec_t Length(vec3_t v) |
| { |
| int i; |
| float length; |
| |
| length = 0; |
| for (i=0 ; i< 3 ; i++) |
| length += v[i]*v[i]; |
| length = sqrt (length); // FIXME |
| |
| return length; |
| } |
| |
| |
| int Q_log2(int val) |
| { |
| int answer=0; |
| while (val>>=1) |
| answer++; |
| return answer; |
| } |
| |
| |
| /* |
| ================ |
| R_ConcatRotations |
| ================ |
| */ |
| void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) |
| { |
| out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + |
| in1[0][2] * in2[2][0]; |
| out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + |
| in1[0][2] * in2[2][1]; |
| out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + |
| in1[0][2] * in2[2][2]; |
| out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + |
| in1[1][2] * in2[2][0]; |
| out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + |
| in1[1][2] * in2[2][1]; |
| out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + |
| in1[1][2] * in2[2][2]; |
| out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + |
| in1[2][2] * in2[2][0]; |
| out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + |
| in1[2][2] * in2[2][1]; |
| out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + |
| in1[2][2] * in2[2][2]; |
| } |
| |
| |
| /* |
| ================ |
| R_ConcatTransforms |
| ================ |
| */ |
| void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) |
| { |
| out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + |
| in1[0][2] * in2[2][0]; |
| out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + |
| in1[0][2] * in2[2][1]; |
| out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + |
| in1[0][2] * in2[2][2]; |
| out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + |
| in1[0][2] * in2[2][3] + in1[0][3]; |
| out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + |
| in1[1][2] * in2[2][0]; |
| out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + |
| in1[1][2] * in2[2][1]; |
| out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + |
| in1[1][2] * in2[2][2]; |
| out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + |
| in1[1][2] * in2[2][3] + in1[1][3]; |
| out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + |
| in1[2][2] * in2[2][0]; |
| out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + |
| in1[2][2] * in2[2][1]; |
| out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + |
| in1[2][2] * in2[2][2]; |
| out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + |
| in1[2][2] * in2[2][3] + in1[2][3]; |
| } |
| |
| |
| /* |
| =================== |
| FloorDivMod |
| |
| Returns mathematically correct (floor-based) quotient and remainder for |
| numer and denom, both of which should contain no fractional part. The |
| quotient must fit in 32 bits. |
| ==================== |
| */ |
| |
| void FloorDivMod (double numer, double denom, int *quotient, |
| int *rem) |
| { |
| int q, r; |
| double x; |
| |
| #ifndef PARANOID |
| if (denom <= 0.0) |
| Sys_Error ("FloorDivMod: bad denominator %d\n", denom); |
| |
| // if ((floor(numer) != numer) || (floor(denom) != denom)) |
| // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", |
| // numer, denom); |
| #endif |
| |
| if (numer >= 0.0) |
| { |
| |
| x = floor(numer / denom); |
| q = (int)x; |
| r = (int)floor(numer - (x * denom)); |
| } |
| else |
| { |
| // |
| // perform operations with positive values, and fix mod to make floor-based |
| // |
| x = floor(-numer / denom); |
| q = -(int)x; |
| r = (int)floor(-numer - (x * denom)); |
| if (r != 0) |
| { |
| q--; |
| r = (int)denom - r; |
| } |
| } |
| |
| *quotient = q; |
| *rem = r; |
| } |
| |
| |
| /* |
| =================== |
| GreatestCommonDivisor |
| ==================== |
| */ |
| int GreatestCommonDivisor (int i1, int i2) |
| { |
| if (i1 > i2) |
| { |
| if (i2 == 0) |
| return (i1); |
| return GreatestCommonDivisor (i2, i1 % i2); |
| } |
| else |
| { |
| if (i1 == 0) |
| return (i2); |
| return GreatestCommonDivisor (i1, i2 % i1); |
| } |
| } |
| |
| |
| #if !id386 |
| |
| // TODO: move to nonintel.c |
| |
| /* |
| =================== |
| Invert24To16 |
| |
| Inverts an 8.24 value to a 16.16 value |
| ==================== |
| */ |
| |
| fixed16_t Invert24To16(fixed16_t val) |
| { |
| if (val < 256) |
| return (0xFFFFFFFF); |
| |
| return (fixed16_t) |
| (((double)0x10000 * (double)0x1000000 / (double)val) + 0.5); |
| } |
| |
| #endif |