| /*************************************************************************** |
| * __________ __ ___. |
| * Open \______ \ ____ ____ | | _\_ |__ _______ ___ |
| * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / |
| * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < |
| * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ |
| * \/ \/ \/ \/ \/ |
| * $Id$ |
| * |
| * Copyright (C) 2006-2007 Thom Johansen |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| * KIND, either express or implied. |
| * |
| ****************************************************************************/ |
| |
| #include <inttypes.h> |
| #include "config.h" |
| #include "dsp.h" |
| #include "eq.h" |
| #include "replaygain.h" |
| |
| /* Inverse gain of circular cordic rotation in s0.31 format. */ |
| static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ |
| |
| /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ |
| static const unsigned long atan_table[] = { |
| 0x1fffffff, /* +0.785398163 (or pi/4) */ |
| 0x12e4051d, /* +0.463647609 */ |
| 0x09fb385b, /* +0.244978663 */ |
| 0x051111d4, /* +0.124354995 */ |
| 0x028b0d43, /* +0.062418810 */ |
| 0x0145d7e1, /* +0.031239833 */ |
| 0x00a2f61e, /* +0.015623729 */ |
| 0x00517c55, /* +0.007812341 */ |
| 0x0028be53, /* +0.003906230 */ |
| 0x00145f2e, /* +0.001953123 */ |
| 0x000a2f98, /* +0.000976562 */ |
| 0x000517cc, /* +0.000488281 */ |
| 0x00028be6, /* +0.000244141 */ |
| 0x000145f3, /* +0.000122070 */ |
| 0x0000a2f9, /* +0.000061035 */ |
| 0x0000517c, /* +0.000030518 */ |
| 0x000028be, /* +0.000015259 */ |
| 0x0000145f, /* +0.000007629 */ |
| 0x00000a2f, /* +0.000003815 */ |
| 0x00000517, /* +0.000001907 */ |
| 0x0000028b, /* +0.000000954 */ |
| 0x00000145, /* +0.000000477 */ |
| 0x000000a2, /* +0.000000238 */ |
| 0x00000051, /* +0.000000119 */ |
| 0x00000028, /* +0.000000060 */ |
| 0x00000014, /* +0.000000030 */ |
| 0x0000000a, /* +0.000000015 */ |
| 0x00000005, /* +0.000000007 */ |
| 0x00000002, /* +0.000000004 */ |
| 0x00000001, /* +0.000000002 */ |
| 0x00000000, /* +0.000000001 */ |
| 0x00000000, /* +0.000000000 */ |
| }; |
| |
| /** |
| * Implements sin and cos using CORDIC rotation. |
| * |
| * @param phase has range from 0 to 0xffffffff, representing 0 and |
| * 2*pi respectively. |
| * @param cos return address for cos |
| * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, |
| * representing -1 and 1 respectively. |
| */ |
| static long fsincos(unsigned long phase, long *cos) { |
| int32_t x, x1, y, y1; |
| unsigned long z, z1; |
| int i; |
| |
| /* Setup initial vector */ |
| x = cordic_circular_gain; |
| y = 0; |
| z = phase; |
| |
| /* The phase has to be somewhere between 0..pi for this to work right */ |
| if (z < 0xffffffff / 4) { |
| /* z in first quadrant, z += pi/2 to correct */ |
| x = -x; |
| z += 0xffffffff / 4; |
| } else if (z < 3 * (0xffffffff / 4)) { |
| /* z in third quadrant, z -= pi/2 to correct */ |
| z -= 0xffffffff / 4; |
| } else { |
| /* z in fourth quadrant, z -= 3pi/2 to correct */ |
| x = -x; |
| z -= 3 * (0xffffffff / 4); |
| } |
| |
| /* Each iteration adds roughly 1-bit of extra precision */ |
| for (i = 0; i < 31; i++) { |
| x1 = x >> i; |
| y1 = y >> i; |
| z1 = atan_table[i]; |
| |
| /* Decided which direction to rotate vector. Pivot point is pi/2 */ |
| if (z >= 0xffffffff / 4) { |
| x -= y1; |
| y += x1; |
| z -= z1; |
| } else { |
| x += y1; |
| y -= x1; |
| z += z1; |
| } |
| } |
| |
| *cos = x; |
| |
| return y; |
| } |
| |
| /** |
| * Calculate first order shelving filter. Filter is not directly usable by the |
| * eq_filter() function. |
| * @param cutoff shelf midpoint frequency. See eq_pk_coefs for format. |
| * @param A decibel value multiplied by ten, describing gain/attenuation of |
| * shelf. Max value is 24 dB. |
| * @param low true for low-shelf filter, false for high-shelf filter. |
| * @param c pointer to coefficient storage. Coefficients are s4.27 format. |
| */ |
| void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c) |
| { |
| long sin, cos; |
| int32_t b0, b1, a0, a1; /* s3.28 */ |
| const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */ |
| |
| sin = fsincos(cutoff/2, &cos); |
| if (low) { |
| const int32_t sin_div_g = DIV64(sin, g, 25); |
| cos >>= 3; |
| b0 = FRACMUL(sin, g) + cos; /* 0.25 .. 4.10 */ |
| b1 = FRACMUL(sin, g) - cos; /* -1 .. 3.98 */ |
| a0 = sin_div_g + cos; /* 0.25 .. 4.10 */ |
| a1 = sin_div_g - cos; /* -1 .. 3.98 */ |
| } else { |
| const int32_t cos_div_g = DIV64(cos, g, 25); |
| sin >>= 3; |
| b0 = sin + FRACMUL(cos, g); /* 0.25 .. 4.10 */ |
| b1 = sin - FRACMUL(cos, g); /* -3.98 .. 1 */ |
| a0 = sin + cos_div_g; /* 0.25 .. 4.10 */ |
| a1 = sin - cos_div_g; /* -3.98 .. 1 */ |
| } |
| |
| const int32_t rcp_a0 = DIV64(1, a0, 57); /* 0.24 .. 3.98, s2.29 */ |
| *c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */ |
| *c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */ |
| *c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */ |
| } |
| |
| #ifdef HAVE_SW_TONE_CONTROLS |
| /** |
| * Calculate second order section filter consisting of one low-shelf and one |
| * high-shelf section. |
| * @param cutoff_low low-shelf midpoint frequency. See eq_pk_coefs for format. |
| * @param cutoff_high high-shelf midpoint frequency. |
| * @param A_low decibel value multiplied by ten, describing gain/attenuation of |
| * low-shelf part. Max value is 24 dB. |
| * @param A_high decibel value multiplied by ten, describing gain/attenuation of |
| * high-shelf part. Max value is 24 dB. |
| * @param A decibel value multiplied by ten, describing additional overall gain. |
| * @param c pointer to coefficient storage. Coefficients are s4.27 format. |
| */ |
| void filter_bishelf_coefs(unsigned long cutoff_low, unsigned long cutoff_high, |
| long A_low, long A_high, long A, int32_t *c) |
| { |
| const long g = get_replaygain_int(A*10) << 7; /* 10^(db/20), s0.31 */ |
| int32_t c_ls[3], c_hs[3]; |
| |
| filter_shelf_coefs(cutoff_low, A_low, true, c_ls); |
| filter_shelf_coefs(cutoff_high, A_high, false, c_hs); |
| c_ls[0] = FRACMUL(g, c_ls[0]); |
| c_ls[1] = FRACMUL(g, c_ls[1]); |
| |
| /* now we cascade the two first order filters to one second order filter |
| * which can be used by eq_filter(). these resulting coefficients have a |
| * really wide numerical range, so we use a fixed point format which will |
| * work for the selected cutoff frequencies (in dsp.c) only. |
| */ |
| const int32_t b0 = c_ls[0], b1 = c_ls[1], b2 = c_hs[0], b3 = c_hs[1]; |
| const int32_t a0 = c_ls[2], a1 = c_hs[2]; |
| *c++ = FRACMUL_SHL(b0, b2, 4); |
| *c++ = FRACMUL_SHL(b0, b3, 4) + FRACMUL_SHL(b1, b2, 4); |
| *c++ = FRACMUL_SHL(b1, b3, 4); |
| *c++ = a0 + a1; |
| *c++ = -FRACMUL_SHL(a0, a1, 4); |
| } |
| #endif |
| |
| /* Coef calculation taken from Audio-EQ-Cookbook.txt by Robert Bristow-Johnson. |
| * Slightly faster calculation can be done by deriving forms which use tan() |
| * instead of cos() and sin(), but the latter are far easier to use when doing |
| * fixed point math, and performance is not a big point in the calculation part. |
| * All the 'a' filter coefficients are negated so we can use only additions |
| * in the filtering equation. |
| */ |
| |
| /** |
| * Calculate second order section peaking filter coefficients. |
| * @param cutoff a value from 0 to 0x80000000, where 0 represents 0 Hz and |
| * 0x80000000 represents the Nyquist frequency (samplerate/2). |
| * @param Q Q factor value multiplied by ten. Lower bound is artificially set |
| * at 0.5. |
| * @param db decibel value multiplied by ten, describing gain/attenuation at |
| * peak freq. Max value is 24 dB. |
| * @param c pointer to coefficient storage. Coefficients are s3.28 format. |
| */ |
| void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) |
| { |
| long cs; |
| const long one = 1 << 28; /* s3.28 */ |
| const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */ |
| const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
| int32_t a0, a1, a2; /* these are all s3.28 format */ |
| int32_t b0, b1, b2; |
| const long alphadivA = DIV64(alpha, A, 27); |
| |
| /* possible numerical ranges are in comments by each coef */ |
| b0 = one + FRACMUL(alpha, A); /* [1 .. 5] */ |
| b1 = a1 = -2*(cs >> 3); /* [-2 .. 2] */ |
| b2 = one - FRACMUL(alpha, A); /* [-3 .. 1] */ |
| a0 = one + alphadivA; /* [1 .. 5] */ |
| a2 = one - alphadivA; /* [-3 .. 1] */ |
| |
| /* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */ |
| const long rcp_a0 = DIV64(1, a0, 59); /* s0.31 */ |
| *c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */ |
| *c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */ |
| *c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */ |
| *c++ = FRACMUL(-a1, rcp_a0); /* [-2 .. 2] */ |
| *c++ = FRACMUL(-a2, rcp_a0); /* [-0.6 .. 1] */ |
| } |
| |
| /** |
| * Calculate coefficients for lowshelf filter. Parameters are as for |
| * eq_pk_coefs, but the coefficient format is s5.26 fixed point. |
| */ |
| void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) |
| { |
| long cs; |
| const long one = 1 << 25; /* s6.25 */ |
| const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ |
| const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ |
| const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
| const long ap1 = (A >> 4) + one; |
| const long am1 = (A >> 4) - one; |
| const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); |
| int32_t a0, a1, a2; /* these are all s6.25 format */ |
| int32_t b0, b1, b2; |
| |
| /* [0.1 .. 40] */ |
| b0 = FRACMUL_SHL(A, ap1 - FRACMUL(am1, cs) + twosqrtalpha, 2); |
| /* [-16 .. 63.4] */ |
| b1 = FRACMUL_SHL(A, am1 - FRACMUL(ap1, cs), 3); |
| /* [0 .. 31.7] */ |
| b2 = FRACMUL_SHL(A, ap1 - FRACMUL(am1, cs) - twosqrtalpha, 2); |
| /* [0.5 .. 10] */ |
| a0 = ap1 + FRACMUL(am1, cs) + twosqrtalpha; |
| /* [-16 .. 4] */ |
| a1 = -2*((am1 + FRACMUL(ap1, cs))); |
| /* [0 .. 8] */ |
| a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha; |
| |
| /* [0.1 .. 1.99] */ |
| const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */ |
| *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */ |
| *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */ |
| *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */ |
| *c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */ |
| *c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */ |
| } |
| |
| /** |
| * Calculate coefficients for highshelf filter. Parameters are as for |
| * eq_pk_coefs, but the coefficient format is s5.26 fixed point. |
| */ |
| void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c) |
| { |
| long cs; |
| const long one = 1 << 25; /* s6.25 */ |
| const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */ |
| const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */ |
| const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */ |
| const long ap1 = (A >> 4) + one; |
| const long am1 = (A >> 4) - one; |
| const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha); |
| int32_t a0, a1, a2; /* these are all s6.25 format */ |
| int32_t b0, b1, b2; |
| |
| /* [0.1 .. 40] */ |
| b0 = FRACMUL_SHL(A, ap1 + FRACMUL(am1, cs) + twosqrtalpha, 2); |
| /* [-63.5 .. 16] */ |
| b1 = -FRACMUL_SHL(A, am1 + FRACMUL(ap1, cs), 3); |
| /* [0 .. 32] */ |
| b2 = FRACMUL_SHL(A, ap1 + FRACMUL(am1, cs) - twosqrtalpha, 2); |
| /* [0.5 .. 10] */ |
| a0 = ap1 - FRACMUL(am1, cs) + twosqrtalpha; |
| /* [-4 .. 16] */ |
| a1 = 2*((am1 - FRACMUL(ap1, cs))); |
| /* [0 .. 8] */ |
| a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha; |
| |
| /* [0.1 .. 1.99] */ |
| const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */ |
| *c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */ |
| *c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */ |
| *c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */ |
| *c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */ |
| *c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */ |
| } |
| |
| /* We realise the filters as a second order direct form 1 structure. Direct |
| * form 1 was chosen because of better numerical properties for fixed point |
| * implementations. |
| */ |
| |
| #if (!defined(CPU_COLDFIRE) && !defined(CPU_ARM)) |
| void eq_filter(int32_t **x, struct eqfilter *f, unsigned num, |
| unsigned channels, unsigned shift) |
| { |
| unsigned c, i; |
| long long acc; |
| |
| /* Direct form 1 filtering code. |
| y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2], |
| where y[] is output and x[] is input. |
| */ |
| |
| for (c = 0; c < channels; c++) { |
| for (i = 0; i < num; i++) { |
| acc = (long long) x[c][i] * f->coefs[0]; |
| acc += (long long) f->history[c][0] * f->coefs[1]; |
| acc += (long long) f->history[c][1] * f->coefs[2]; |
| acc += (long long) f->history[c][2] * f->coefs[3]; |
| acc += (long long) f->history[c][3] * f->coefs[4]; |
| f->history[c][1] = f->history[c][0]; |
| f->history[c][0] = x[c][i]; |
| f->history[c][3] = f->history[c][2]; |
| x[c][i] = (acc << shift) >> 32; |
| f->history[c][2] = x[c][i]; |
| } |
| } |
| } |
| #endif |
| |