blob: e76b08a4297dd25c8a0b34b8ebab00887f9bc8b7 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Andy Young
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "logf.h"
#include "system.h"
#include "string.h"
#include "audio.h"
#include "debug.h"
#include "i2c-coldfire.h"
#include "audiohw.h"
#include "pcf50606.h"
const struct sound_settings_info audiohw_settings[] = {
[SOUND_VOLUME] = {"dB", 0, 1, -84, 0, -25},
[SOUND_BASS] = {"dB", 0, 2, 0, 24, 0},
[SOUND_TREBLE] = {"dB", 0, 2, 0, 6, 0},
[SOUND_BALANCE] = {"%", 0, 1,-100, 100, 0},
[SOUND_CHANNELS] = {"", 0, 1, 0, 5, 0},
[SOUND_STEREO_WIDTH] = {"%", 0, 5, 0, 250, 100},
#ifdef HAVE_RECORDING
[SOUND_LEFT_GAIN] = {"dB", 1, 1,-128, 96, 0},
[SOUND_RIGHT_GAIN] = {"dB", 1, 1,-128, 96, 0},
[SOUND_MIC_GAIN] = {"dB", 1, 1,-128, 108, 16},
#endif
};
/* convert tenth of dB volume (-840..0) to master volume register value */
int tenthdb2master(int db)
{
if (db < -720) /* 1.5 dB steps */
return (2940 - db) / 15;
else if (db < -660) /* 0.75 dB steps */
return (1110 - db) * 2 / 15;
else if (db < -520) /* 0.5 dB steps */
return (520 - db) / 5;
else /* 0.25 dB steps */
return -db * 2 / 5;
}
/* convert tenth of dB volume (-780..0) to mixer volume register value */
int tenthdb2mixer(int db)
{
if (db < -660) /* 1.5 dB steps */
return (2640 - db) / 15;
else if (db < -600) /* 0.75 dB steps */
return (990 - db) * 2 / 15;
else if (db < -460) /* 0.5 dB steps */
return (460 - db) / 5;
else /* 0.25 dB steps */
return -db * 2 / 5;
}
/* ------------------------------------------------- */
/* Local functions and variables */
/* ------------------------------------------------- */
static int uda1380_write_reg(unsigned char reg, unsigned short value);
unsigned short uda1380_regs[0x30];
short recgain_mic;
short recgain_line;
/* Definition of a playback configuration to start with */
#define NUM_DEFAULT_REGS 13
unsigned short uda1380_defaults[2*NUM_DEFAULT_REGS] =
{
REG_0, EN_DAC | EN_INT | EN_DEC | ADC_CLK | DAC_CLK |
SYSCLK_256FS | WSPLL_25_50,
REG_I2S, I2S_IFMT_IIS,
REG_PWR, PON_PLL | PON_BIAS,
/* PON_HP & PON_DAC is enabled later */
REG_AMIX, AMIX_RIGHT(0x3f) | AMIX_LEFT(0x3f),
/* 00=max, 3f=mute */
REG_MASTER_VOL, MASTER_VOL_LEFT(0x20) | MASTER_VOL_RIGHT(0x20),
/* 00=max, ff=mute */
REG_MIX_VOL, MIX_VOL_CH_1(0) | MIX_VOL_CH_2(0xff),
/* 00=max, ff=mute */
REG_EQ, EQ_MODE_MAX,
/* Bass and treble = 0 dB */
REG_MUTE, MUTE_MASTER | MUTE_CH2,
/* Mute everything to start with */
REG_MIX_CTL, MIX_CTL_MIX,
/* Enable mixer */
REG_DEC_VOL, 0,
REG_PGA, MUTE_ADC,
REG_ADC, SKIP_DCFIL,
REG_AGC, 0
};
/* Returns 0 if register was written or -1 if write failed */
static int uda1380_write_reg(unsigned char reg, unsigned short value)
{
unsigned char data[3];
data[0] = reg;
data[1] = value >> 8;
data[2] = value & 0xff;
if (i2c_write(I2C_IFACE_0, UDA1380_ADDR, data, 3) != 3)
{
DEBUGF("uda1380 error reg=0x%x", reg);
return -1;
}
uda1380_regs[reg] = value;
return 0;
}
/**
* Sets left and right master volume (0(max) to 252(muted))
*/
void audiohw_set_master_vol(int vol_l, int vol_r)
{
uda1380_write_reg(REG_MASTER_VOL,
MASTER_VOL_LEFT(vol_l) | MASTER_VOL_RIGHT(vol_r));
}
/**
* Sets mixer volume for both channels (0(max) to 228(muted))
*/
void audiohw_set_mixer_vol(int channel1, int channel2)
{
uda1380_write_reg(REG_MIX_VOL,
MIX_VOL_CH_1(channel1) | MIX_VOL_CH_2(channel2));
}
/**
* Sets the bass value (0-12)
*/
void audiohw_set_bass(int value)
{
uda1380_write_reg(REG_EQ, (uda1380_regs[REG_EQ] & ~BASS_MASK)
| BASSL(value) | BASSR(value));
}
/**
* Sets the treble value (0-3)
*/
void audiohw_set_treble(int value)
{
uda1380_write_reg(REG_EQ, (uda1380_regs[REG_EQ] & ~TREBLE_MASK)
| TREBLEL(value) | TREBLER(value));
}
void audiohw_mute(bool mute)
{
unsigned int value = uda1380_regs[REG_MUTE];
if (mute)
value = value | MUTE_MASTER;
else
value = value & ~MUTE_MASTER;
uda1380_write_reg(REG_MUTE, value);
}
/* Returns 0 if successful or -1 if some register failed */
static int audiohw_set_regs(void)
{
int i;
memset(uda1380_regs, 0, sizeof(uda1380_regs));
/* Initialize all registers */
for (i=0; i<NUM_DEFAULT_REGS; i++)
{
unsigned char reg = uda1380_defaults[i*2+0];
unsigned short value = uda1380_defaults[i*2+1];
if (uda1380_write_reg(reg, value) == -1)
return -1;
}
return 0;
}
/* Silently enable / disable audio output */
void audiohw_enable_output(bool enable)
{
if (enable) {
uda1380_write_reg(REG_PWR, uda1380_regs[REG_PWR] | PON_DAC | PON_HP);
} else {
uda1380_write_reg(REG_MUTE, MUTE_MASTER);
uda1380_write_reg(REG_PWR, uda1380_regs[REG_PWR] & ~PON_DAC);
}
}
static void reset(void)
{
#ifdef IRIVER_H300_SERIES
int mask = disable_irq_save();
pcf50606_write(0x3b, 0x00); /* GPOOD2 high Z */
pcf50606_write(0x3b, 0x07); /* GPOOD2 low */
restore_irq(mask);
#else
/* RESET signal */
or_l(1<<29, &GPIO_OUT);
or_l(1<<29, &GPIO_ENABLE);
or_l(1<<29, &GPIO_FUNCTION);
sleep(HZ/100);
and_l(~(1<<29), &GPIO_OUT);
#endif
}
/**
* Sets frequency settings for DAC and ADC relative to MCLK
*
* Selection for frequency ranges:
* Fs: range: with:
* 11025: 0 = 6.25 to 12.5 MCLK/2 SCLK, LRCK: Audio Clk / 16
* 22050: 1 = 12.5 to 25 MCLK/2 SCLK, LRCK: Audio Clk / 8
* 44100: 2 = 25 to 50 MCLK SCLK, LRCK: Audio Clk / 4 (default)
* 88200: 3 = 50 to 100 MCLK SCLK, LRCK: Audio Clk / 2 <= TODO: Needs WSPLL
*/
void audiohw_set_frequency(unsigned fsel)
{
static const unsigned short values_reg[4][2] =
{
/* Fs: */
{ 0, WSPLL_625_125 | SYSCLK_512FS }, /* 11025 */
{ 0, WSPLL_125_25 | SYSCLK_256FS }, /* 22050 */
{ MIX_CTL_SEL_NS, WSPLL_25_50 | SYSCLK_256FS }, /* 44100 */
{ MIX_CTL_SEL_NS, WSPLL_50_100 | SYSCLK_256FS }, /* 88200 */
};
const unsigned short *ent;
if (fsel >= ARRAYLEN(values_reg))
fsel = 2;
ent = values_reg[fsel];
/* Set WSPLL input frequency range or SYSCLK divider */
uda1380_regs[REG_0] &= ~0xf;
uda1380_write_reg(REG_0, uda1380_regs[REG_0] | ent[1]);
/* Choose 3rd order or 5th order noise shaper */
uda1380_regs[REG_MIX_CTL] &= ~MIX_CTL_SEL_NS;
uda1380_write_reg(REG_MIX_CTL, uda1380_regs[REG_MIX_CTL] | ent[0]);
}
/* Initialize UDA1380 codec with default register values (uda1380_defaults) */
void audiohw_init(void)
{
recgain_mic = 0;
recgain_line = 0;
reset();
if (audiohw_set_regs() == -1)
{
/* this shoud never (!) happen. */
logf("uda1380: audiohw_init failed");
}
}
void audiohw_postinit(void)
{
/* Sleep a while so the power can stabilize (especially a long
delay is needed for the line out connector). */
sleep(HZ);
/* Power on FSDAC and HP amp. */
audiohw_enable_output(true);
/* UDA1380: Unmute the master channel
(DAC should be at zero point now). */
audiohw_mute(false);
}
void audiohw_set_prescaler(int val)
{
audiohw_set_mixer_vol(tenthdb2mixer(-val), tenthdb2mixer(-val));
}
/* Nice shutdown of UDA1380 codec */
void audiohw_close(void)
{
/* First enable mute and sleep a while */
uda1380_write_reg(REG_MUTE, MUTE_MASTER);
sleep(HZ/8);
/* Then power off the rest of the chip */
uda1380_write_reg(REG_PWR, 0);
uda1380_write_reg(REG_0, 0); /* Disable codec */
}
/**
* Calling this function enables the UDA1380 to send
* sound samples over the I2S bus, which is connected
* to the processor's IIS1 interface.
*
* source_mic: true=record from microphone, false=record from line-in (or radio)
*/
void audiohw_enable_recording(bool source_mic)
{
uda1380_regs[REG_0] &= ~(ADC_CLK | DAC_CLK);
uda1380_write_reg(REG_0, uda1380_regs[REG_0] | EN_ADC);
if (source_mic)
{
/* VGA_GAIN: 0=0 dB, F=30dB */
/* Output of left ADC is fed into right bitstream */
uda1380_regs[REG_PWR] &= ~(PON_PGAR | PON_ADCR);
uda1380_write_reg(REG_PWR, uda1380_regs[REG_PWR] | PON_LNA | PON_ADCL);
uda1380_regs[REG_ADC] &= ~SKIP_DCFIL;
uda1380_write_reg(REG_ADC, (uda1380_regs[REG_ADC] & VGA_GAIN_MASK)
| SEL_LNA | SEL_MIC | EN_DCFIL);
uda1380_write_reg(REG_PGA, 0);
}
else
{
/* PGA_GAIN: 0=0 dB, F=24dB */
uda1380_regs[REG_PWR] &= ~PON_LNA;
uda1380_write_reg(REG_PWR, uda1380_regs[REG_PWR] | PON_PGAL | PON_ADCL
| PON_PGAR | PON_ADCR);
uda1380_write_reg(REG_ADC, EN_DCFIL);
uda1380_write_reg(REG_PGA, uda1380_regs[REG_PGA] & PGA_GAIN_MASK);
}
sleep(HZ/8);
uda1380_write_reg(REG_I2S, uda1380_regs[REG_I2S] | I2S_MODE_MASTER);
uda1380_write_reg(REG_MIX_CTL, MIX_MODE(1));
}
/**
* Stop sending samples on the I2S bus
*/
void audiohw_disable_recording(void)
{
uda1380_write_reg(REG_PGA, MUTE_ADC);
sleep(HZ/8);
uda1380_write_reg(REG_I2S, I2S_IFMT_IIS);
uda1380_regs[REG_PWR] &= ~(PON_LNA | PON_ADCL | PON_ADCR |
PON_PGAL | PON_PGAR);
uda1380_write_reg(REG_PWR, uda1380_regs[REG_PWR]);
uda1380_regs[REG_0] &= ~EN_ADC;
uda1380_write_reg(REG_0, uda1380_regs[REG_0] | ADC_CLK | DAC_CLK);
uda1380_write_reg(REG_ADC, SKIP_DCFIL);
}
/**
* Set recording gain and volume
*
* type: params: ranges:
* AUDIO_GAIN_MIC: left -128 .. 108 -> -64 .. 54 dB gain
* AUDIO_GAIN_LINEIN left & right -128 .. 96 -> -64 .. 48 dB gain
*
* Note: - For all types the value 0 gives 0 dB gain.
* - order of setting both values determines if the small glitch will
be a peak or a dip. The small glitch is caused by the time between
setting the two gains
*/
void audiohw_set_recvol(int left, int right, int type)
{
int left_ag, right_ag;
switch (type)
{
case AUDIO_GAIN_MIC:
left_ag = MIN(MAX(0, left / 4), 15);
left -= left_ag * 4;
if(left < recgain_mic)
{
uda1380_write_reg(REG_DEC_VOL, DEC_VOLL(left)
| DEC_VOLR(left));
uda1380_write_reg(REG_ADC, (uda1380_regs[REG_ADC]
& ~VGA_GAIN_MASK)
| VGA_GAIN(left_ag));
}
else
{
uda1380_write_reg(REG_ADC, (uda1380_regs[REG_ADC]
& ~VGA_GAIN_MASK)
| VGA_GAIN(left_ag));
uda1380_write_reg(REG_DEC_VOL, DEC_VOLL(left)
| DEC_VOLR(left));
}
recgain_mic = left;
logf("Mic: %dA/%dD", left_ag, left);
break;
case AUDIO_GAIN_LINEIN:
left_ag = MIN(MAX(0, left / 6), 8);
left -= left_ag * 6;
right_ag = MIN(MAX(0, right / 6), 8);
right -= right_ag * 6;
if(left < recgain_line)
{
/* for this order we can combine both registers,
making the glitch even smaller */
unsigned char data[5];
unsigned short value_dec;
unsigned short value_pga;
value_dec = DEC_VOLL(left) | DEC_VOLR(right);
value_pga = (uda1380_regs[REG_PGA] & ~PGA_GAIN_MASK)
| PGA_GAINL(left_ag) | PGA_GAINR(right_ag);
data[0] = REG_DEC_VOL;
data[1] = value_dec >> 8;
data[2] = value_dec & 0xff;
data[3] = value_pga >> 8;
data[4] = value_pga & 0xff;
if (i2c_write(I2C_IFACE_0, UDA1380_ADDR, data, 5) != 5)
{
DEBUGF("uda1380 error reg=combi rec gain");
}
else
{
uda1380_regs[REG_DEC_VOL] = value_dec;
uda1380_regs[REG_PGA] = value_pga;
}
}
else
{
uda1380_write_reg(REG_PGA, (uda1380_regs[REG_PGA]
& ~PGA_GAIN_MASK)
| PGA_GAINL(left_ag)
| PGA_GAINR(right_ag));
uda1380_write_reg(REG_DEC_VOL, DEC_VOLL(left)
| DEC_VOLR(right));
}
recgain_line = left;
logf("Line L: %dA/%dD", left_ag, left);
logf("Line R: %dA/%dD", right_ag, right);
break;
}
}
/**
* Enable or disable recording monitor (so one can listen to the recording)
*
*/
void audiohw_set_monitor(bool enable)
{
if (enable) /* enable channel 2 */
uda1380_write_reg(REG_MUTE, uda1380_regs[REG_MUTE] & ~MUTE_CH2);
else /* mute channel 2 */
uda1380_write_reg(REG_MUTE, uda1380_regs[REG_MUTE] | MUTE_CH2);
}