blob: 34c5db1faa896e7971cb86e98aa9b5f6796dd9b3 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 by Tomasz Malesinski
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "usb_ch9.h"
#include "usb_drv.h"
#include "usb_core.h"
#include "isp1583.h"
#include "thread.h"
#include "logf.h"
#include <stdio.h>
#define DIR_RX 0
#define DIR_TX 1
struct usb_endpoint
{
unsigned char *out_buf;
short out_len;
short out_ptr;
void (*out_done)(int, unsigned char *, int);
unsigned char out_in_progress;
unsigned char *in_buf;
short in_min_len;
short in_max_len;
short in_ptr;
void (*in_done)(int, unsigned char *, int);
unsigned char in_ack;
unsigned char halt[2];
unsigned char enabled[2];
short max_pkt_size[2];
short type;
};
static unsigned char setup_pkt_buf[8];
static struct usb_endpoint endpoints[NUM_ENDPOINTS];
static bool high_speed_mode = false;
static inline void or_int_value(volatile unsigned short *a, volatile unsigned short *b, unsigned long r, unsigned long value)
{
set_int_value(*a, *b, (r | value));
}
static inline void bc_int_value(volatile unsigned short *a, volatile unsigned short *b, unsigned long r, unsigned long value)
{
set_int_value(*a, *b, (r & ~value));
}
static inline void nop_f(void)
{
yield();
}
#define NOP asm volatile("nop\n");
static inline int ep_index(int n, bool dir)
{
return (n << 1) | dir;
}
static inline bool epidx_dir(int idx)
{
return idx & 1;
}
static inline int epidx_n(int idx)
{
return idx >> 1;
}
static inline void usb_select_endpoint(int idx)
{
/* Select the endpoint */
ISP1583_DFLOW_EPINDEX = idx;
/* The delay time from the Write Endpoint Index register to the Read Data Port register must be at least 190 ns.
* The delay time from the Write Endpoint Index register to the Write Data Port register must be at least 100 ns.
*/
NOP;
}
static inline void usb_select_setup_endpoint(void)
{
/* Select the endpoint */
ISP1583_DFLOW_EPINDEX = DFLOW_EPINDEX_EP0SETUP;
/* The delay time from the Write Endpoint Index register to the Read Data Port register must be at least 190 ns.
* The delay time from the Write Endpoint Index register to the Write Data Port register must be at least 100 ns.
*/
NOP;
}
static void usb_setup_endpoint(int idx, int max_pkt_size, int type)
{
if(epidx_n(idx)!=0)
{
usb_select_endpoint(idx);
ISP1583_DFLOW_MAXPKSZ = max_pkt_size & 0x7FF;
ISP1583_DFLOW_EPTYPE = (DFLOW_EPTYPE_NOEMPKT | DFLOW_EPTYPE_DBLBUF | (type & 0x3));
/* clear buffer ... */
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_CLBUF;
/* ... twice because of double buffering */
usb_select_endpoint(idx);
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_CLBUF;
}
struct usb_endpoint *ep;
ep = &(endpoints[epidx_n(idx)]);
ep->halt[epidx_dir(idx)] = 0;
ep->enabled[epidx_dir(idx)] = 0;
ep->out_in_progress = 0;
ep->in_min_len = -1;
ep->in_ack = 0;
ep->type = type;
ep->max_pkt_size[epidx_dir(idx)] = max_pkt_size;
}
static void usb_enable_endpoint(int idx)
{
if(epidx_n(idx)!=0)
{
usb_select_endpoint(idx);
/* Enable interrupt */
or_int_value(&ISP1583_INIT_INTEN_A, &ISP1583_INIT_INTEN_B, ISP1583_INIT_INTEN_READ, 1 << (10 + idx));
/* Enable endpoint */
ISP1583_DFLOW_EPTYPE |= DFLOW_EPTYPE_ENABLE;
}
endpoints[epidx_n(idx)].enabled[epidx_dir(idx)] = 1;
}
/*
static void usb_disable_endpoint(int idx, bool set_struct)
{
usb_select_endpoint(idx);
ISP1583_DFLOW_EPTYPE &= ~DFLOW_EPTYPE_ENABLE;
bc_int_value(&ISP1583_INIT_INTEN_A, &ISP1583_INIT_INTEN_B, ISP1583_INIT_INTEN_READ, 1 << (10 + idx));
if(set_struct)
endpoints[epidx_n(idx)].enabled[epidx_dir(idx)] = 0;
}
*/
static int usb_get_packet(unsigned char *buf, int max_len)
{
int len, i;
len = ISP1583_DFLOW_BUFLEN;
if (max_len < 0 || max_len > len)
max_len = len;
i = 0;
while (i < len)
{
unsigned short d = ISP1583_DFLOW_DATA;
if (i < max_len)
buf[i] = d & 0xff;
i++;
if (i < max_len)
buf[i] = (d >> 8) & 0xff;
i++;
}
return max_len;
}
static int usb_receive(int n)
{
logf("usb_receive(%d)", n);
int len;
if (endpoints[n].halt[DIR_RX]
|| !endpoints[n].enabled[DIR_RX]
|| endpoints[n].in_min_len < 0
|| !endpoints[n].in_ack)
return -1;
endpoints[n].in_ack = 0;
usb_select_endpoint(ep_index(n, DIR_RX));
len = usb_get_packet(endpoints[n].in_buf + endpoints[n].in_ptr,
endpoints[n].in_max_len - endpoints[n].in_ptr);
endpoints[n].in_ptr += len;
if (endpoints[n].in_ptr >= endpoints[n].in_min_len) {
endpoints[n].in_min_len = -1;
if (endpoints[n].in_done)
(*(endpoints[n].in_done))(n, endpoints[n].in_buf,
endpoints[n].in_ptr);
}
logf("receive_end");
return 0;
}
static bool usb_out_buffer_full(int ep)
{
usb_select_endpoint(ep_index(ep, DIR_TX));
if (ISP1583_DFLOW_EPTYPE & 4) /* Check if type=bulk and double buffering is set */
return (ISP1583_DFLOW_BUFSTAT & 3) == 3; /* Return true if both buffers are filled */
else
return (ISP1583_DFLOW_BUFSTAT & 3) != 0; /* Return true if one of the buffers are filled */
}
static int usb_send(int n)
{
logf("usb_send(%d)", n);
int max_pkt_size, len;
int i;
unsigned char *p;
if (endpoints[n].halt[DIR_TX]
|| !endpoints[n].enabled[DIR_TX]
|| !endpoints[n].out_in_progress)
{
logf("NOT SEND TO EP!");
return -1;
}
if (endpoints[n].out_ptr < 0)
{
endpoints[n].out_in_progress = 0;
if (endpoints[n].out_done)
(*(endpoints[n].out_done))(n, endpoints[n].out_buf,
endpoints[n].out_len);
logf("ALREADY SENT TO EP!");
return -1;
}
if (usb_out_buffer_full(n))
{
logf("BUFFER FULL!");
return -1;
}
usb_select_endpoint(ep_index(n, DIR_TX));
max_pkt_size = endpoints[n].max_pkt_size[DIR_TX];
len = endpoints[n].out_len - endpoints[n].out_ptr;
if (len > max_pkt_size)
len = max_pkt_size;
if(len < max_pkt_size)
ISP1583_DFLOW_BUFLEN = len;
p = endpoints[n].out_buf + endpoints[n].out_ptr;
i = 0;
while (len - i >= 2) {
ISP1583_DFLOW_DATA = p[i] | (p[i + 1] << 8);
i += 2;
}
if (i < len)
ISP1583_DFLOW_DATA = p[i];
endpoints[n].out_ptr += len;
/*
if (endpoints[n].out_ptr == endpoints[n].out_len
&& len < max_pkt_size)
*/
if (endpoints[n].out_ptr == endpoints[n].out_len)
endpoints[n].out_ptr = -1;
logf("send_end");
return 0;
}
static void usb_stall_endpoint(int idx)
{
usb_select_endpoint(idx);
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_STALL;
endpoints[epidx_n(idx)].halt[epidx_dir(idx)] = 1;
}
static void usb_unstall_endpoint(int idx)
{
usb_select_endpoint(idx);
ISP1583_DFLOW_CTRLFUN &= ~DFLOW_CTRLFUN_STALL;
ISP1583_DFLOW_EPTYPE &= ~DFLOW_EPTYPE_ENABLE;
ISP1583_DFLOW_EPTYPE |= DFLOW_EPTYPE_ENABLE;
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_CLBUF;
if (epidx_dir(idx) == DIR_TX)
endpoints[epidx_n(idx)].out_in_progress = 0;
else
{
endpoints[epidx_n(idx)].in_min_len = -1;
endpoints[epidx_n(idx)].in_ack = 0;
}
endpoints[epidx_n(idx)].halt[epidx_dir(idx)] = 0;
}
static void usb_status_ack(int ep, int dir)
{
logf("usb_status_ack(%d)", dir);
usb_select_endpoint(ep_index(ep, dir));
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_STATUS;
}
static void usb_data_stage_enable(int ep, int dir)
{
logf("usb_data_stage_enable(%d)", dir);
usb_select_endpoint(ep_index(ep, dir));
ISP1583_DFLOW_CTRLFUN |= DFLOW_CTRLFUN_DSEN;
}
static void usb_handle_setup_rx(void)
{
int len;
usb_select_setup_endpoint();
len = usb_get_packet(setup_pkt_buf, 8);
if (len == 8)
usb_core_control_request((struct usb_ctrlrequest*)setup_pkt_buf);
else
{
usb_drv_stall(0, true, false);
usb_drv_stall(0, true, true);
logf("usb_handle_setup_rx() failed");
return;
}
logf("usb_handle_setup_rx(): %02x %02x %02x %02x %02x %02x %02x %02x", setup_pkt_buf[0], setup_pkt_buf[1], setup_pkt_buf[2], setup_pkt_buf[3], setup_pkt_buf[4], setup_pkt_buf[5], setup_pkt_buf[6], setup_pkt_buf[7]);
}
static void usb_handle_data_int(int ep, int dir)
{
int len;
if (dir == DIR_TX)
len = usb_send(ep);
else
{
len = usb_receive(ep);
endpoints[ep].in_ack = 1;
}
logf("usb_handle_data_int(%d, %d) finished", ep, dir);
}
bool usb_drv_powered(void)
{
#if 0
return (ISP1583_INIT_OTG & INIT_OTG_BSESS_VALID) ? true : false;
#else
return (ISP1583_INIT_MODE & INIT_MODE_VBUSSTAT) ? true : false;
#endif
}
static void setup_endpoints(void)
{
usb_setup_endpoint(ep_index(0, DIR_RX), 64, 0);
usb_setup_endpoint(ep_index(0, DIR_TX), 64, 0);
int i;
for(i = 1; i < NUM_ENDPOINTS-1; i++)
{
usb_setup_endpoint(ep_index(i, DIR_RX), (high_speed_mode ? 512 : 64), 2); /* 2 = TYPE_BULK */
usb_setup_endpoint(ep_index(i, DIR_TX), (high_speed_mode ? 512 : 64), 2);
}
usb_enable_endpoint(ep_index(0, DIR_RX));
usb_enable_endpoint(ep_index(0, DIR_TX));
for (i = 1; i < NUM_ENDPOINTS-1; i++)
{
usb_enable_endpoint(ep_index(i, DIR_RX));
usb_enable_endpoint(ep_index(i, DIR_TX));
}
ZVM_SPECIFIC;
}
void usb_helper(void)
{
if(ISP1583_GEN_INT_READ & ISP1583_INIT_INTEN_READ)
{
#ifdef DEBUG
logf("Helper detected interrupt... [%d]", current_tick);
#endif
usb_drv_int();
}
return;
}
void usb_drv_init(void)
{
/* Disable interrupt at CPU level */
DIS_INT_CPU_TARGET;
/* Unlock the device's registers */
ISP1583_GEN_UNLCKDEV = ISP1583_UNLOCK_CODE;
/* Soft reset the device */
ISP1583_INIT_MODE = INIT_MODE_SFRESET;
sleep(10);
/* Enable CLKAON & GLINTENA */
ISP1583_INIT_MODE = STANDARD_INIT_MODE;
/* Disable all OTG functions */
ISP1583_INIT_OTG = 0;
#if 0
#ifdef USE_HIGH_SPEED
/* Force device to high speed */
ISP1583_GEN_TSTMOD = GEN_TSTMOD_FORCEHS;
high_speed_mode = true;
#endif
#endif
#ifdef DEBUG
logf("BUS_CONF/DA0:%d MODE0/DA1: %d MODE1: %d", (bool)(ISP1583_INIT_MODE & INIT_MODE_TEST0), (bool)(ISP1583_INIT_MODE & INIT_MODE_TEST1), (bool)(ISP1583_INIT_MODE & INIT_MODE_TEST2));
logf("Chip ID: 0x%x", ISP1583_GEN_CHIPID);
//logf("INV0: 0x% IRQEDGE: 0x%x IRQPORT: 0x%x", IO_GIO_INV0, IO_GIO_IRQEDGE, IO_GIO_IRQPORT);
#endif
/*Set interrupt generation to target-specific mode +
* Set the control pipe to ACK only interrupt +
* Set the IN pipe to ACK only interrupt +
* Set OUT pipe to ACK and NYET interrupt
*/
ISP1583_INIT_INTCONF = 0x54 | INT_CONF_TARGET;
/* Clear all interrupts */
set_int_value(ISP1583_GEN_INT_A, ISP1583_GEN_INT_B, 0xFFFFFFFF);
/* Enable USB interrupts */
set_int_value(ISP1583_INIT_INTEN_A, ISP1583_INIT_INTEN_B, STANDARD_INTEN);
ZVM_SPECIFIC;
/* Enable interrupt at CPU level */
EN_INT_CPU_TARGET;
setup_endpoints();
/* Clear device address and disable it */
ISP1583_INIT_ADDRESS = 0;
/* Turn SoftConnect on */
ISP1583_INIT_MODE |= INIT_MODE_SOFTCT;
ZVM_SPECIFIC;
tick_add_task(usb_helper);
logf("usb_init_device() finished");
}
int usb_drv_port_speed(void)
{
return (int)high_speed_mode;
}
void usb_drv_exit(void)
{
logf("usb_drv_exit()");
/* Disable device */
ISP1583_INIT_MODE &= ~INIT_MODE_SOFTCT;
ISP1583_INIT_ADDRESS = 0;
/* Disable interrupts */
set_int_value(ISP1583_INIT_INTEN_A, ISP1583_INIT_INTEN_B, 0);
/* and the CPU's one... */
DIS_INT_CPU_TARGET;
/* Send usb controller to suspend mode */
ISP1583_INIT_MODE = INIT_MODE_GOSUSP;
ISP1583_INIT_MODE = 0;
tick_remove_task(usb_helper);
ZVM_SPECIFIC;
}
void usb_drv_stall(int endpoint, bool stall, bool in)
{
logf("%sstall EP%d %s", (stall ? "" : "un"), endpoint, (in ? "RX" : "TX" ));
if (stall)
usb_stall_endpoint(ep_index(endpoint, (int)in));
else
usb_unstall_endpoint(ep_index(endpoint, (int)in));
}
bool usb_drv_stalled(int endpoint, bool in)
{
return (endpoints[endpoint].halt[(int)in] == 1);
}
static void out_callback(int ep, unsigned char *buf, int len)
{
(void)buf;
logf("out_callback(%d, 0x%x, %d)", ep, &buf, len);
usb_status_ack(ep, DIR_RX);
usb_core_transfer_complete(ep, true, 0, len); /* 0=>status succeeded, haven't worked out status failed yet... */
}
static void in_callback(int ep, unsigned char *buf, int len)
{
(void)buf;
logf("in_callback(%d, 0x%x, %d)", ep, &buf, len);
usb_status_ack(ep, DIR_TX);
usb_core_transfer_complete(ep, false, 0, len);
}
int usb_drv_recv(int ep, void* ptr, int length)
{
logf("usb_drv_recv(%d, 0x%x, %d)", ep, &ptr, length);
if(ep == 0 && length == 0 && ptr == NULL)
{
usb_status_ack(ep, DIR_TX);
return 0;
}
endpoints[ep].in_done = in_callback;
endpoints[ep].in_buf = ptr;
endpoints[ep].in_max_len = length;
endpoints[ep].in_min_len = length;
endpoints[ep].in_ptr = 0;
if(ep == 0)
{
usb_data_stage_enable(ep, DIR_RX);
return usb_receive(ep);
}
else
return usb_receive(ep);
}
int usb_drv_send_nonblocking(int ep, void* ptr, int length)
{
/* First implement DMA... */
return usb_drv_send(ep, ptr, length);
}
int usb_drv_send(int ep, void* ptr, int length)
{
logf("usb_drv_send_nb(%d, 0x%x, %d)", ep, &ptr, length);
if(ep == 0 && length == 0 && ptr == NULL)
{
usb_status_ack(ep, DIR_RX);
return 0;
}
if(endpoints[ep].out_in_progress == 1)
return -1;
endpoints[ep].out_done = out_callback;
endpoints[ep].out_buf = ptr;
endpoints[ep].out_len = length;
endpoints[ep].out_ptr = 0;
endpoints[ep].out_in_progress = 1;
if(ep == 0)
{
int rc = usb_send(ep);
usb_data_stage_enable(ep, DIR_TX);
usb_drv_wait(ep, DIR_TX);
return rc;
}
else
return usb_send(ep);
}
void usb_drv_reset_endpoint(int ep, bool send)
{
logf("reset endpoint(%d, %d)", ep, send);
usb_setup_endpoint(ep_index(ep, (int)send), endpoints[ep].max_pkt_size[(int)send], endpoints[ep].type);
usb_enable_endpoint(ep_index(ep, (int)send));
}
void usb_drv_wait(int ep, bool send)
{
logf("usb_drv_wait(%d, %d)", ep, send);
if(send)
{
while (endpoints[ep].out_in_progress)
nop_f();
}
else
{
while (endpoints[ep].in_ack)
nop_f();
}
}
void usb_drv_cancel_all_transfers(void)
{
logf("usb_drv_cancel_all_tranfers()");
int i;
for(i=0;i<NUM_ENDPOINTS-1;i++)
endpoints[i].halt[0] = endpoints[i].halt[1] = 1;
}
static void bus_reset(void)
{
/* Enable CLKAON & GLINTENA */
ISP1583_INIT_MODE = STANDARD_INIT_MODE;
/* Enable USB interrupts */
ISP1583_INIT_INTCONF = 0x54 | INT_CONF_TARGET;
set_int_value(ISP1583_INIT_INTEN_A, ISP1583_INIT_INTEN_B, STANDARD_INTEN);
/* Disable all OTG functions */
ISP1583_INIT_OTG = 0;
/* Clear device address and enable it */
ISP1583_INIT_ADDRESS = INIT_ADDRESS_DEVEN;
ZVM_SPECIFIC;
/* Reset endpoints to default */
setup_endpoints();
logf("bus reset->done");
}
/* Method for handling interrupts, must be called from usb-<target>.c */
void IRAM_ATTR usb_drv_int(void)
{
unsigned long ints;
ints = ISP1583_GEN_INT_READ & ISP1583_INIT_INTEN_READ;
if(!ints)
return;
/* Unlock the device's registers */
ISP1583_GEN_UNLCKDEV = ISP1583_UNLOCK_CODE;
#if 0
logf(" handling int [0x%x & 0x%x = 0x%x]", ISP1583_GEN_INT_READ, ISP1583_INIT_INTEN_READ, ints);
#endif
if(ints & INT_IEBRST) /* Bus reset */
{
logf("BRESET");
high_speed_mode = false;
bus_reset();
usb_core_bus_reset();
/* Mask bus reset interrupt */
set_int_value(ISP1583_GEN_INT_A, ISP1583_GEN_INT_B, INT_IEBRST);
return;
}
if(ints & INT_IEP0SETUP) /* EP0SETUP interrupt */
{
logf("EP0SETUP");
usb_handle_setup_rx();
}
if(ints & INT_IEHS_STA) /* change from full-speed to high-speed mode -> endpoints need to get reconfigured!! */
{
logf("HS_STA");
high_speed_mode = true;
setup_endpoints();
}
if(ints & INT_EP_MASK) /* Endpoints interrupt */
{
unsigned long ep_event;
unsigned short i = 10;
ep_event = ints & INT_EP_MASK;
while(ep_event)
{
if(i>25)
break;
if(ep_event & (1 << i))
{
logf("EP%d %s interrupt", (i - 10) / 2, i % 2 ? "RX" : "TX");
usb_handle_data_int((i - 10) / 2, i % 2);
ep_event &= ~(1 << i);
}
i++;
}
}
if(ints & INT_IERESM && !(ints & INT_IESUSP)) /* Resume status: status change from suspend to resume (active) */
{
logf("RESM");
}
if(ints & INT_IESUSP && !(ints & INT_IERESM)) /* Suspend status: status change from active to suspend */
{
logf("SUSP");
}
if(ints & INT_IEDMA) /* change in the DMA Interrupt Reason register */
{
logf("DMA");
}
if(ints & INT_IEVBUS) /* transition from LOW to HIGH on VBUS */
{
logf("VBUS");
}
/* Mask all (enabled) interrupts */
set_int_value(ISP1583_GEN_INT_A, ISP1583_GEN_INT_B, ints);
ZVM_SPECIFIC;
}
void usb_drv_set_address(int address)
{
logf("usb_drv_set_address(0x%x)", address);
ISP1583_INIT_ADDRESS = (address & 0x7F) | INIT_ADDRESS_DEVEN;
ZVM_SPECIFIC;
usb_status_ack(0, DIR_TX);
}
int dbg_usb_num_items(void)
{
return 2+NUM_ENDPOINTS*2;
}
char* dbg_usb_item(int selected_item, void *data, char *buffer, size_t buffer_len)
{
if(selected_item < 2)
{
switch(selected_item)
{
case 0:
snprintf(buffer, buffer_len, "USB connected: %s", (usb_drv_connected() ? "Yes" : "No"));
return buffer;
case 1:
snprintf(buffer, buffer_len, "HS mode: %s", (high_speed_mode ? "Yes" : "No"));
return buffer;
}
}
else
{
int n = ep_index((selected_item - 2) / 2, (selected_item - 2) % 2);
if(endpoints[n].enabled == false)
snprintf(buffer, buffer_len, "EP%d[%s]: DISABLED", epidx_n(n), (epidx_dir(n) ? "TX" : "RX"));
else
{
if(epidx_dir(n))
{
if(endpoints[n].out_in_progress)
snprintf(buffer, buffer_len, "EP%d[TX]: TRANSFERRING DATA -> %d bytes/%d bytes", epidx_n(n), (endpoints[n].out_len - endpoints[n].out_ptr), endpoints[n].out_len);
else
snprintf(buffer, buffer_len, "EP%d[TX]: STANDBY", epidx_n(n));
}
else
{
if(endpoints[n].in_buf && !endpoints[n].in_ack)
snprintf(buffer, buffer_len, "EP%d[RX]: RECEIVING DATA -> %d bytes/%d bytes", epidx_n(n), endpoints[n].in_ptr, endpoints[n].in_max_len);
else
snprintf(buffer, buffer_len, "EP%d[RX]: STANDBY", epidx_n(n));
}
}
return buffer;
}
return NULL;
(void)data;
}
void usb_drv_set_test_mode(int mode)
{
logf("usb_drv_set_test_mode(%d)", mode);
switch(mode){
case 0:
ISP1583_GEN_TSTMOD = 0;
/* Power cycle... */
break;
case 1:
ISP1583_GEN_TSTMOD = GEN_TSTMOD_JSTATE;
break;
case 2:
ISP1583_GEN_TSTMOD = GEN_TSTMOD_KSTATE;
break;
case 3:
ISP1583_GEN_TSTMOD = GEN_TSTMOD_SE0_NAK;
break;
case 4:
//REG_PORTSC1 |= PORTSCX_PTC_PACKET;
break;
case 5:
//REG_PORTSC1 |= PORTSCX_PTC_FORCE_EN;
break;
}
}