blob: 0f61e5d72b01c98261995b7e4b34f5a4b5cfc203 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
* Tuner driver for the Sanyo LV24020LP
*
* Copyright (C) 2007 Ivan Zupan
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include <stdlib.h>
#include "config.h"
#include "thread.h"
#include "kernel.h"
#include "tuner.h" /* tuner abstraction interface */
#include "power.h"
#include "fmradio.h" /* physical interface driver */
#include "sound.h"
#include "pp5024.h"
#include "system.h"
#ifndef BOOTLOADER
static struct mutex tuner_mtx;
#if 0
/* define to enable tuner logging */
#define SANYO_TUNER_LOG
#endif
#ifdef SANYO_TUNER_LOG
#include "sprintf.h"
#include "file.h"
static int fd_log = -1;
#define TUNER_LOG_OPEN() if (fd_log < 0) \
fd_log = creat("/tuner_dump.txt")
/* syncing required because close() is never called */
#define TUNER_LOG_SYNC() fsync(fd_log)
#define TUNER_LOG(s...) fdprintf(fd_log, s)
#else
#define TUNER_LOG_OPEN()
#define TUNER_LOG_SYNC()
#define TUNER_LOG(s...)
#endif /* SANYO_TUNER_LOG */
/** tuner register defines **/
#if defined(SANSA_E200) || defined(SANSA_C200)
#define GPIO_OUTPUT_EN GPIOH_OUTPUT_EN
#define GPIO_OUTPUT_VAL GPIOH_OUTPUT_VAL
#define GPIO_INPUT_VAL GPIOH_INPUT_VAL
#define FM_NRW_PIN 3
#define FM_CLOCK_PIN 4
#define FM_DATA_PIN 5
#elif defined(COWON_D2)
#define GPIO_OUTPUT_EN GPIOC_DIR
#define GPIO_OUTPUT_VAL GPIOC
#define GPIO_INPUT_VAL GPIOC
#define FM_NRW_PIN 31
#define FM_CLOCK_PIN 29
#define FM_DATA_PIN 30
#define udelay(x) /* Remove hack when D2 has udelay */
#else
#error GPIOs undefined for this target
#endif
#define FM_CLK_DELAY 1
/* block 1 registers */
/* R */
#define CHIP_ID 0x00
/* W */
#define BLK_SEL 0x01
#define BLK1 0x01
#define BLK2 0x02
/* W */
#define MSRC_SEL 0x02
#define MSR_O (1 << 7)
#define AFC_LVL (1 << 6)
#define AFC_SPD (1 << 5)
#define MSS_SD (1 << 2)
#define MSS_FM (1 << 1)
#define MSS_IF (1 << 0)
/* W */
#define FM_OSC 0x03
/* W */
#define SD_OSC 0x04
/* W */
#define IF_OSC 0x05
/* W */
#define CNT_CTRL 0x06
#define CNT1_CLR (1 << 7)
#define CTAB(x) ((x) & (0x7 << 4))
#define CTAB_STOP_2 (0x0 << 4)
#define CTAB_STOP_8 (0x1 << 4)
#define CTAB_STOP_32 (0x2 << 4)
#define CTAB_STOP_128 (0x3 << 4)
#define CTAB_STOP_512 (0x4 << 4)
#define CTAB_STOP_2048 (0x5 << 4)
#define CTAB_STOP_8192 (0x6 << 4)
#define CTAB_STOP_32768 (0x7 << 4)
#define SWP_CNT_L (1 << 3)
#define CNT_EN (1 << 2)
#define CNT_SEL (1 << 1)
#define CNT_SET (1 << 0)
/* W */
#define IRQ_MSK 0x08
#define IM_MS (1 << 6)
#define IRQ_LVL (1 << 3)
#define IM_AFC (1 << 2)
#define IM_FS (1 << 1)
#define IM_CNT2 (1 << 0)
/* W */
#define FM_CAP 0x09
/* R */
#define CNT_L 0x0a /* Counter register low value */
/* R */
#define CNT_H 0x0b /* Counter register high value */
/* R */
#define CTRL_STAT 0x0c
#define AFC_FLG (1 << 0)
/* R */
#define RADIO_STAT 0x0d
#define RSS_MS (1 << 7)
#define RSS_FS(x) ((x) & 0x7f)
#define RSS_FS_GET(x) ((x) & 0x7f)
#define RSS_FS_SET(x) (x)
/* Note: Reading this register will clear field strength and mono/stereo interrupt. */
/* R */
#define IRQ_ID 0x0e
#define II_CNT2 (1 << 5)
#define II_AFC (1 << 3)
#define II_FS_MS (1 << 0)
/* W */
#define IRQ_OUT 0x0f
/* block 2 registers - offset added in order to id and avoid manual
switching */
#define BLK2_START 0x10
/* W */
#define RADIO_CTRL1 (0x02 + BLK2_START)
#define EN_MEAS (1 << 7)
#define EN_AFC (1 << 6)
#define DIR_AFC (1 << 3)
#define RST_AFC (1 << 2)
/* W */
#define IF_CENTER (0x03 + BLK2_START)
/* W */
#define IF_BW (0x05 + BLK2_START)
/* W */
#define RADIO_CTRL2 (0x06 + BLK2_START)
#define VREF2 (1 << 7)
#define VREF (1 << 6)
#define STABI_BP (1 << 5)
#define IF_PM_L (1 << 4)
#define AGCSP (1 << 1)
#define AM_ANT_BSW (1 << 0) /* ?? */
/* W */
#define RADIO_CTRL3 (0x07 + BLK2_START)
#define AGC_SLVL (1 << 7)
#define VOLSH (1 << 6)
#define TB_ON (1 << 5)
#define AMUTE_L (1 << 4)
#define SE_FM (1 << 3)
#define SE_BE (1 << 1)
#define SE_EXT (1 << 0) /* For LV24000=0, LV24001/24002=Ext source enab. */
/* W */
#define STEREO_CTRL (0x08 + BLK2_START)
#define FRCST (1 << 7)
#define FMCS(x) ((x) & (0x7 << 4))
#define FMCS_GET(x) (((x) & (0x7 << 4)) >> 4)
#define FMCS_SET(x) ((x) << 4)
#define AUTOSSR (1 << 3)
#define PILTCA (1 << 2)
#define SD_PM (1 << 1)
#define ST_M (1 << 0)
/* W */
#define AUDIO_CTRL1 (0x09 + BLK2_START)
#define TONE_LVL(x) ((x) & (0xf << 4))
#define TONE_LVL_GET(x) (((x) & (0xf << 4)) >> 4)
#define TONE_LVL_SET(x) ((x) << 4)
#define VOL_LVL(x) ((x) & 0xf)
#define VOL_LVL_GET(x) ((x) & 0xf)
#define VOL_LVL_SET(x) ((x) << 4)
/* W */
#define AUDIO_CTRL2 (0x0a + BLK2_START)
#define BASS_PP (1 << 0)
#define BASS_P (1 << 1) /* BASS_P, BASS_N are mutually-exclusive */
#define BASS_N (1 << 2)
#define TREB_P (1 << 3) /* TREB_P, TREB_N are mutually-exclusive */
#define TREB_N (1 << 4)
#define DEEMP (1 << 5)
#define BPFREQ(x) ((x) & (0x3 << 6))
#define BPFREQ_2_0K (0x0 << 6)
#define BPFREQ_1_0K (0x1 << 6)
#define BPFREQ_0_5K (0x2 << 6)
#define BPFREQ_HIGH (0x3 << 6)
/* W */
#define PW_SCTRL (0x0b + BLK2_START)
#define SS_CTRL(x) ((x) & (0x7 << 5))
#define SS_CTRL_GET(x) (((x) & (0x7 << 5)) >> 5)
#define SS_CTRL_SET(x) ((x) << 5)
#define SM_CTRL(x) ((x) & (0x7 << 2))
#define SM_CTRL_GET(x) (((x) & (0x7 << 2)) >> 2)
#define SM_CTRL_SET(x) ((x) << 2)
#define PW_HPA (1 << 1) /* LV24002 only */
#define PW_RAD (1 << 0)
/* shadow for writeable registers */
#define TUNER_POWERED (1 << 0)
#define TUNER_PRESENT (1 << 1)
#define TUNER_AWAKE (1 << 2)
#define TUNER_PRESENCE_CHECKED (1 << 3)
static unsigned tuner_status = 0;
static unsigned char lv24020lp_regs[0x1c];
static const int sw_osc_low = 10; /* 30; */
static const int sw_osc_high = 240; /* 200; */
static const int sw_cap_low = 0;
static const int sw_cap_high = 191;
/* linear coefficients used for tuning */
static int coef_00, coef_01, coef_10, coef_11;
/* DAC control register set values */
static int if_set, sd_set;
static inline bool tuner_awake(void)
{
return (tuner_status & TUNER_AWAKE) != 0;
}
/* send a byte to the tuner - expects write mode to be current */
static void lv24020lp_send_byte(unsigned int byte)
{
int i;
for (i = 0; i < 8; i++)
{
GPIO_OUTPUT_VAL &= ~(1 << FM_CLOCK_PIN);
if (byte & 1)
GPIO_OUTPUT_VAL |= (1 << FM_DATA_PIN);
else
GPIO_OUTPUT_VAL &= ~(1 << FM_DATA_PIN);
udelay(FM_CLK_DELAY);
GPIO_OUTPUT_VAL |= (1 << FM_CLOCK_PIN);
udelay(FM_CLK_DELAY);
byte >>= 1;
}
}
/* end a write cycle on the tuner */
static void lv24020lp_end_write(void)
{
/* switch back to read mode */
GPIO_OUTPUT_EN &= ~(1 << FM_DATA_PIN);
GPIO_OUTPUT_VAL &= ~(1 << FM_NRW_PIN);
udelay(FM_CLK_DELAY);
}
/* prepare a write cycle on the tuner */
static unsigned int lv24020lp_begin_write(unsigned int address)
{
/* Get register's block, translate address */
unsigned int blk = (address >= BLK2_START) ?
(address -= BLK2_START, BLK2) : BLK1;
for (;;)
{
/* Prepare 3-wire bus pins for write cycle */
GPIO_OUTPUT_VAL |= (1 << FM_NRW_PIN);
GPIO_OUTPUT_EN |= (1 << FM_DATA_PIN);
udelay(FM_CLK_DELAY);
/* current block == register block? */
if (blk == lv24020lp_regs[BLK_SEL])
return address;
/* switch block */
lv24020lp_regs[BLK_SEL] = blk;
/* data first */
lv24020lp_send_byte(blk);
/* then address */
lv24020lp_send_byte(BLK_SEL);
lv24020lp_end_write();
}
}
/* write a byte to a tuner register */
static void lv24020lp_write(unsigned int address, unsigned int data)
{
/* shadow logical values but do logical=>physical remappings on some
registers' data. */
lv24020lp_regs[address] = data;
switch (address)
{
case FM_OSC:
/* L: 000..255
* P: 255..000 */
data = 255 - data;
break;
case FM_CAP:
/* L: 000..063, 064..191
* P: 255..192, 127..000 */
data = ((data < 64) ? 255 : (255 - 64)) - data;
break;
case RADIO_CTRL1:
/* L: data
* P: data | always "1" bits */
data |= (1 << 4) | (1 << 1) | (1 << 0);
break;
}
/* Check if interface is turned on */
if (!(tuner_status & TUNER_POWERED))
return;
address = lv24020lp_begin_write(address);
/* data first */
lv24020lp_send_byte(data);
/* then address */
lv24020lp_send_byte(address);
lv24020lp_end_write();
}
/* helpers to set/clear register bits */
static void lv24020lp_write_set(unsigned int address, unsigned int bits)
{
lv24020lp_write(address, lv24020lp_regs[address] | bits);
}
static void lv24020lp_write_clear(unsigned int address, unsigned int bits)
{
lv24020lp_write(address, lv24020lp_regs[address] & ~bits);
}
/* read a byte from a tuner register */
static unsigned int lv24020lp_read(unsigned int address)
{
int i;
unsigned int toread;
/* Check if interface is turned on */
if (!(tuner_status & TUNER_POWERED))
return 0;
address = lv24020lp_begin_write(address);
/* address */
lv24020lp_send_byte(address);
lv24020lp_end_write();
/* data */
toread = 0;
for (i = 0; i < 8; i++)
{
GPIO_OUTPUT_VAL &= ~(1 << FM_CLOCK_PIN);
udelay(FM_CLK_DELAY);
if (GPIO_INPUT_VAL & (1 << FM_DATA_PIN))
toread |= (1 << i);
GPIO_OUTPUT_VAL |= (1 << FM_CLOCK_PIN);
udelay(FM_CLK_DELAY);
}
return toread;
}
/* enables auto frequency centering */
static void enable_afc(bool enabled)
{
unsigned int radio_ctrl1 = lv24020lp_regs[RADIO_CTRL1];
if (enabled)
{
radio_ctrl1 &= ~RST_AFC;
radio_ctrl1 |= EN_AFC;
}
else
{
radio_ctrl1 |= RST_AFC;
radio_ctrl1 &= ~EN_AFC;
}
lv24020lp_write(RADIO_CTRL1, radio_ctrl1);
}
static int calculate_coef(unsigned fkhz)
{
/* Overflow below 66000kHz --
My tuner tunes down to a min of ~72600kHz but datasheet mentions
66000kHz as the minimum. ?? Perhaps 76000kHz was intended? */
return fkhz < 66000 ?
0x7fffffff : 0x81d1a47efc5cb700ull / ((uint64_t)fkhz*fkhz);
}
static int interpolate_x(int expected_y, int x1, int x2, int y1, int y2)
{
return y1 == y2 ?
0 : (int64_t)(expected_y - y1)*(x2 - x1) / (y2 - y1) + x1;
}
static int interpolate_y(int expected_x, int x1, int x2, int y1, int y2)
{
return x1 == x2 ?
0 : (int64_t)(expected_x - x1)*(y2 - y1) / (x2 - x1) + y1;
}
/* this performs measurements of IF, FM and Stereo frequencies
* Input can be: MSS_FM, MSS_IF, MSS_SD */
static int tuner_measure(unsigned char type, int scale, int duration)
{
int64_t finval;
/* enable measuring */
lv24020lp_write_set(MSRC_SEL, type);
lv24020lp_write_clear(CNT_CTRL, CNT_SEL);
lv24020lp_write_set(RADIO_CTRL1, EN_MEAS);
/* reset counter */
lv24020lp_write_set(CNT_CTRL, CNT1_CLR);
lv24020lp_write_clear(CNT_CTRL, CNT1_CLR);
/* start counter, delay for specified time and stop it */
lv24020lp_write_set(CNT_CTRL, CNT_EN);
udelay(duration*1000 - 16);
lv24020lp_write_clear(CNT_CTRL, CNT_EN);
/* read tick count */
finval = (lv24020lp_read(CNT_H) << 8) | lv24020lp_read(CNT_L);
/* restore measure mode */
lv24020lp_write_clear(RADIO_CTRL1, EN_MEAS);
lv24020lp_write_clear(MSRC_SEL, type);
/* convert value */
if (type == MSS_FM)
finval = scale*finval*256 / duration;
else
finval = scale*finval / duration;
/* This function takes a loooong time and other stuff needs
running by now */
yield();
return (int)finval;
}
/* set the FM oscillator frequency */
static void set_frequency(int freq)
{
int coef, cap_value, osc_value;
int f1, f2, x1, x2;
int count;
TUNER_LOG_OPEN();
TUNER_LOG("set_frequency(%d)\n", freq);
enable_afc(false);
/* MHz -> kHz */
freq /= 1000;
TUNER_LOG("Select cap:\n");
coef = calculate_coef(freq);
cap_value = interpolate_x(coef, sw_cap_low, sw_cap_high,
coef_00, coef_01);
osc_value = sw_osc_low;
lv24020lp_write(FM_OSC, osc_value);
/* Just in case - don't go into infinite loop */
for (count = 0; count < 30; count++)
{
int y0 = interpolate_y(cap_value, sw_cap_low, sw_cap_high,
coef_00, coef_01);
int y1 = interpolate_y(cap_value, sw_cap_low, sw_cap_high,
coef_10, coef_11);
int coef_fcur, cap_new, coef_cor, range;
lv24020lp_write(FM_CAP, cap_value);
range = y1 - y0;
f1 = tuner_measure(MSS_FM, 1, 16);
coef_fcur = calculate_coef(f1);
coef_cor = calculate_coef((f1*1000 + 32*256) / 1000);
y0 = coef_cor;
y1 = y0 + range;
TUNER_LOG("%d %d %d %d %d %d %d %d\n",
f1, cap_value, coef, coef_fcur, coef_cor, y0, y1, range);
if (coef >= y0 && coef <= y1)
{
osc_value = interpolate_x(coef, sw_osc_low, sw_osc_high,
y0, y1);
if (osc_value >= sw_osc_low && osc_value <= sw_osc_high)
break;
}
cap_new = interpolate_x(coef, cap_value, sw_cap_high,
coef_fcur, coef_01);
if (cap_new == cap_value)
{
if (coef < coef_fcur)
cap_value++;
else
cap_value--;
}
else
{
cap_value = cap_new;
}
}
TUNER_LOG("osc_value: %d\n", osc_value);
TUNER_LOG("Tune:\n");
x1 = sw_osc_low, x2 = sw_osc_high;
/* FM_OSC already at SW_OSC low and f1 is already the measured
frequency */
do
{
int x2_new;
lv24020lp_write(FM_OSC, x2);
f2 = tuner_measure(MSS_FM, 1, 16);
if (abs(f2 - freq) <= 16)
{
TUNER_LOG("%d %d %d %d\n", f1, f2, x1, x2);
break;
}
x2_new = interpolate_x(freq, x1, x2, f1, f2);
x1 = x2, f1 = f2, x2 = x2_new;
TUNER_LOG("%d %d %d %d\n", f1, f2, x1, x2);
}
while (x2 != 0);
if (x2 == 0)
{
/* May still be close enough */
TUNER_LOG("tuning failed - diff: %d\n", f2 - freq);
}
enable_afc(true);
TUNER_LOG("\n");
TUNER_LOG_SYNC();
}
#define TOO_SMALL (1 << 0)
#define TOO_BIG (1 << 1)
#define APPROACH_UP_1 (1 << 2)
#define APPROACH_DOWN_1 (1 << 3)
static void fine_step_tune(int (*setcmp)(int regval), int regval, int step)
{
/* Registers are not always stable, timeout if best fit not found soon
enough */
unsigned long abort = current_tick + HZ*2;
int flags = 0;
while (TIME_BEFORE(current_tick, abort))
{
int cmp;
regval = regval + step;
cmp = setcmp(regval);
if (cmp == 0)
break;
step = abs(step);
if (cmp < 0)
{
flags |= TOO_SMALL;
if (step == 1)
flags |= APPROACH_UP_1;
}
else
{
step = -step;
flags |= TOO_BIG;
if (step == -1)
step |= APPROACH_DOWN_1;
}
if ((flags & APPROACH_UP_1) && (flags & APPROACH_DOWN_1))
break; /* approached with step=1: best fit value found */
if ((flags & TOO_SMALL) && (flags & TOO_BIG))
{
step /= 2;
if (step == 0)
step = 1;
flags &= ~(TOO_SMALL | TOO_BIG);
}
}
}
static int if_setcmp(int regval)
{
lv24020lp_write(IF_OSC, regval);
lv24020lp_write(IF_CENTER, regval);
lv24020lp_write(IF_BW, 65*regval/100);
if_set = tuner_measure(MSS_IF, 1000, 32);
/* This register is bounces around by a few hundred Hz and doesn't seem
to be precisely tuneable. Just do 110000 +/- 500 since it's not very
critical it seems. */
if (abs(if_set - 110000) <= 500)
return 0;
return if_set < 110000 ? -1 : 1;
}
static int sd_setcmp(int regval)
{
lv24020lp_write(SD_OSC, regval);
sd_set = tuner_measure(MSS_SD, 1000, 32);
if (abs(sd_set - 38300) <= 31)
return 0;
return sd_set < 38300 ? -1 : 1;
}
static void set_sleep(bool sleep)
{
if (sleep || tuner_awake())
return;
if ((tuner_status & (TUNER_PRESENT | TUNER_POWERED)) !=
(TUNER_PRESENT | TUNER_POWERED))
return;
enable_afc(false);
/* 2. Calibrate the IF frequency at 110 kHz: */
lv24020lp_write_clear(RADIO_CTRL2, IF_PM_L);
fine_step_tune(if_setcmp, 0x80, 8);
lv24020lp_write_set(RADIO_CTRL2, IF_PM_L);
/* 3. Calibrate the stereo decoder clock at 38.3 kHz: */
lv24020lp_write_set(STEREO_CTRL, SD_PM);
fine_step_tune(sd_setcmp, 0x80, 8);
lv24020lp_write_clear(STEREO_CTRL, SD_PM);
/* calculate FM tuning coefficients */
lv24020lp_write(FM_CAP, sw_cap_low);
lv24020lp_write(FM_OSC, sw_osc_low);
coef_00 = calculate_coef(tuner_measure(MSS_FM, 1, 64));
lv24020lp_write(FM_CAP, sw_cap_high);
coef_01 = calculate_coef(tuner_measure(MSS_FM, 1, 64));
lv24020lp_write(FM_CAP, sw_cap_low);
lv24020lp_write(FM_OSC, sw_osc_high);
coef_10 = calculate_coef(tuner_measure(MSS_FM, 1, 64));
lv24020lp_write(FM_CAP, sw_cap_high);
coef_11 = calculate_coef(tuner_measure(MSS_FM, 1, 64));
/* set various audio level settings */
lv24020lp_write(AUDIO_CTRL1, TONE_LVL_SET(0) | VOL_LVL_SET(0));
lv24020lp_write_set(RADIO_CTRL2, AGCSP);
lv24020lp_write_set(RADIO_CTRL3, VOLSH);
lv24020lp_write(STEREO_CTRL, FMCS_SET(7) | AUTOSSR);
lv24020lp_write(PW_SCTRL, SS_CTRL_SET(3) | SM_CTRL_SET(1) |
PW_RAD);
tuner_status |= TUNER_AWAKE;
}
static int lp24020lp_tuned(void)
{
return RSS_FS(lv24020lp_read(RADIO_STAT)) < 0x1f;
}
static int lv24020lp_debug_info(int setting)
{
int val = -1;
if (setting >= LV24020LP_DEBUG_FIRST && setting <= LV24020LP_DEBUG_LAST)
{
val = 0;
if (tuner_awake())
{
switch (setting)
{
/* tuner-specific debug info */
case LV24020LP_CTRL_STAT:
val = lv24020lp_read(CTRL_STAT);
break;
case LV24020LP_REG_STAT:
val = lv24020lp_read(RADIO_STAT);
break;
case LV24020LP_MSS_FM:
val = tuner_measure(MSS_FM, 1, 16);
break;
case LV24020LP_MSS_IF:
val = tuner_measure(MSS_IF, 1000, 16);
break;
case LV24020LP_MSS_SD:
val = tuner_measure(MSS_SD, 1000, 16);
break;
case LV24020LP_IF_SET:
val = if_set;
break;
case LV24020LP_SD_SET:
val = sd_set;
break;
}
}
}
return val;
}
/** Public interfaces **/
void lv24020lp_init(void)
{
mutex_init(&tuner_mtx);
}
void lv24020lp_lock(void)
{
mutex_lock(&tuner_mtx);
}
void lv24020lp_unlock(void)
{
mutex_unlock(&tuner_mtx);
}
/* This function expects the driver to be locked externally */
void lv24020lp_power(bool status)
{
static const unsigned char tuner_defaults[][2] =
{
/* Block 1 writeable registers */
{ MSRC_SEL, AFC_LVL },
{ FM_OSC, 0x80 },
{ SD_OSC, 0x80 },
{ IF_OSC, 0x80 },
{ CNT_CTRL, CNT1_CLR | SWP_CNT_L },
{ IRQ_MSK, 0x00 }, /* IRQ_LVL -> Low to High */
{ FM_CAP, 0x80 },
/* { IRQ_OUT, 0x00 }, No action on this register (skip) */
/* Block 2 writeable registers */
{ RADIO_CTRL1, EN_AFC },
{ IF_CENTER, 0x80 },
{ IF_BW, 65*0x80 / 100 }, /* 65% of IF_OSC */
{ RADIO_CTRL2, IF_PM_L },
{ RADIO_CTRL3, AGC_SLVL | SE_FM },
{ STEREO_CTRL, FMCS_SET(4) | AUTOSSR },
{ AUDIO_CTRL1, TONE_LVL_SET(7) | VOL_LVL_SET(7) },
{ AUDIO_CTRL2, BPFREQ_HIGH }, /* deemphasis 50us */
{ PW_SCTRL, SS_CTRL_SET(3) | SM_CTRL_SET(3) | PW_RAD },
};
unsigned i;
if (status)
{
tuner_status |= (TUNER_PRESENCE_CHECKED | TUNER_POWERED);
/* if tuner is present, CHIP ID is 0x09 */
if (lv24020lp_read(CHIP_ID) == 0x09)
{
tuner_status |= TUNER_PRESENT;
/* After power-up, the LV2400x needs to be initialized as
follows: */
/* 1. Write default values to the registers: */
lv24020lp_regs[BLK_SEL] = 0; /* Force a switch on the first */
for (i = 0; i < ARRAYLEN(tuner_defaults); i++)
lv24020lp_write(tuner_defaults[i][0], tuner_defaults[i][1]);
/* Complete the startup calibration if the tuner is woken */
sleep(HZ/10);
}
}
else
{
/* Power off */
if (tuner_status & TUNER_PRESENT)
lv24020lp_write_clear(PW_SCTRL, PW_RAD);
tuner_status &= ~(TUNER_POWERED | TUNER_AWAKE);
}
}
int lv24020lp_set(int setting, int value)
{
int val = 1;
mutex_lock(&tuner_mtx);
switch(setting)
{
case RADIO_SLEEP:
set_sleep(value);
break;
case RADIO_FREQUENCY:
set_frequency(value);
break;
case RADIO_SCAN_FREQUENCY:
/* TODO: really implement this */
set_frequency(value);
val = lp24020lp_tuned();
break;
case RADIO_MUTE:
if (value)
lv24020lp_write_clear(RADIO_CTRL3, AMUTE_L);
else
lv24020lp_write_set(RADIO_CTRL3, AMUTE_L);
break;
case RADIO_REGION:
if (lv24020lp_region_data[value])
lv24020lp_write_set(AUDIO_CTRL2, DEEMP);
else
lv24020lp_write_clear(AUDIO_CTRL2, DEEMP);
break;
case RADIO_FORCE_MONO:
if (value)
lv24020lp_write_set(STEREO_CTRL, ST_M);
else
lv24020lp_write_clear(STEREO_CTRL, ST_M);
break;
default:
value = -1;
}
mutex_unlock(&tuner_mtx);
return val;
}
int lv24020lp_get(int setting)
{
int val = -1;
mutex_lock(&tuner_mtx);
switch(setting)
{
case RADIO_TUNED:
/* TODO: really implement this */
val = lp24020lp_tuned();
break;
case RADIO_STEREO:
val = (lv24020lp_read(RADIO_STAT) & RSS_MS) != 0;
break;
case RADIO_PRESENT:
{
bool fmstatus = true;
if (!(tuner_status & TUNER_PRESENCE_CHECKED))
fmstatus = tuner_power(true);
val = (tuner_status & TUNER_PRESENT) != 0;
if (!fmstatus)
tuner_power(false);
break;
}
default:
val = lv24020lp_debug_info(setting);
}
mutex_unlock(&tuner_mtx);
return val;
}
#endif /* BOOTLOADER */