blob: 10efb87cf4bb7473717f85f4869454afc788da0d [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#ifdef SIMULATOR
#include "system-sdl.h"
#include "debug.h"
#endif
#include "thread.h"
#include "cpu.h"
#include "system.h"
#include "panic.h"
/* Make this nonzero to enable more elaborate checks on objects */
#if defined(DEBUG) || defined(SIMULATOR)
#define KERNEL_OBJECT_CHECKS 1 /* Always 1 for DEBUG and sim*/
#else
#define KERNEL_OBJECT_CHECKS 0
#endif
#if KERNEL_OBJECT_CHECKS
#ifdef SIMULATOR
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) { DEBUGF(msg); exit(-1); } })
#else
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) panicf(msg); })
#endif
#else
#define KERNEL_ASSERT(exp, msg...) ({})
#endif
#if !defined(CPU_PP) || !defined(BOOTLOADER)
volatile long current_tick SHAREDDATA_ATTR = 0;
#endif
void (*tick_funcs[MAX_NUM_TICK_TASKS])(void);
extern struct core_entry cores[NUM_CORES];
/* This array holds all queues that are initiated. It is used for broadcast. */
static struct
{
int count;
struct event_queue *queues[MAX_NUM_QUEUES];
IF_COP( struct corelock cl; )
} all_queues SHAREDBSS_ATTR;
/****************************************************************************
* Standard kernel stuff
****************************************************************************/
void kernel_init(void)
{
/* Init the threading API */
init_threads();
/* Other processors will not reach this point in a multicore build.
* In a single-core build with multiple cores they fall-through and
* sleep in cop_main without returning. */
if (CURRENT_CORE == CPU)
{
memset(tick_funcs, 0, sizeof(tick_funcs));
memset(&all_queues, 0, sizeof(all_queues));
corelock_init(&all_queues.cl);
tick_start(1000/HZ);
#ifdef KDEV_INIT
kernel_device_init();
#endif
}
}
/****************************************************************************
* Timer tick
****************************************************************************/
#if CONFIG_CPU == SH7034
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
count = CPU_FREQ * interval_in_ms / 1000 / 8;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
/* We are using timer 0 */
TSTR &= ~0x01; /* Stop the timer */
TSNC &= ~0x01; /* No synchronization */
TMDR &= ~0x01; /* Operate normally */
TCNT0 = 0; /* Start counting at 0 */
GRA0 = (unsigned short)(count - 1);
TCR0 = 0x23; /* Clear at GRA match, sysclock/8 */
/* Enable interrupt on level 1 */
IPRC = (IPRC & ~0x00f0) | 0x0010;
TSR0 &= ~0x01;
TIER0 = 0xf9; /* Enable GRA match interrupt */
TSTR |= 0x01; /* Start timer 1 */
}
void IMIA0(void) __attribute__ ((interrupt_handler));
void IMIA0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TSR0 &= ~0x01;
}
#elif defined(CPU_COLDFIRE)
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
int prescale;
count = CPU_FREQ/2 * interval_in_ms / 1000 / 16;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
prescale = cpu_frequency / CPU_FREQ;
/* Note: The prescaler is later adjusted on-the-fly on CPU frequency
changes within timer.c */
/* We are using timer 0 */
TRR0 = (unsigned short)(count - 1); /* The reference count */
TCN0 = 0; /* reset the timer */
TMR0 = 0x001d | ((unsigned short)(prescale - 1) << 8);
/* restart, CLK/16, enabled, prescaler */
TER0 = 0xff; /* Clear all events */
ICR1 = 0x8c; /* Interrupt on level 3.0 */
IMR &= ~0x200;
}
void TIMER0(void) __attribute__ ((interrupt_handler));
void TIMER0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TER0 = 0xff; /* Clear all events */
}
#elif defined(CPU_PP)
#ifndef BOOTLOADER
void TIMER1(void)
{
int i;
/* Run through the list of tick tasks (using main core) */
TIMER1_VAL; /* Read value to ack IRQ */
/* Run through the list of tick tasks using main CPU core -
wake up the COP through its control interface to provide pulse */
for (i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if (tick_funcs[i])
{
tick_funcs[i]();
}
}
#if NUM_CORES > 1
/* Pulse the COP */
core_wake(COP);
#endif /* NUM_CORES */
current_tick++;
}
#endif
/* Must be last function called init kernel/thread initialization */
void tick_start(unsigned int interval_in_ms)
{
#ifndef BOOTLOADER
TIMER1_CFG = 0x0;
TIMER1_VAL;
/* enable timer */
TIMER1_CFG = 0xc0000000 | (interval_in_ms*1000 - 1);
/* unmask interrupt source */
CPU_INT_EN = TIMER1_MASK;
#else
/* We don't enable interrupts in the bootloader */
(void)interval_in_ms;
#endif
}
#elif CONFIG_CPU == PNX0101
void timer_handler(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
tick_funcs[i]();
}
current_tick++;
TIMER0.clr = 0;
}
void tick_start(unsigned int interval_in_ms)
{
TIMER0.ctrl &= ~0x80; /* Disable the counter */
TIMER0.ctrl |= 0x40; /* Reload after counting down to zero */
TIMER0.load = 3000000 * interval_in_ms / 1000;
TIMER0.ctrl &= ~0xc; /* No prescaler */
TIMER0.clr = 1; /* Clear the interrupt request */
irq_set_int_handler(IRQ_TIMER0, timer_handler);
irq_enable_int(IRQ_TIMER0);
TIMER0.ctrl |= 0x80; /* Enable the counter */
}
#endif
int tick_add_task(void (*f)(void))
{
int i;
int oldlevel = disable_irq_save();
/* Add a task if there is room */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == NULL)
{
tick_funcs[i] = f;
restore_irq(oldlevel);
return 0;
}
}
restore_irq(oldlevel);
panicf("Error! tick_add_task(): out of tasks");
return -1;
}
int tick_remove_task(void (*f)(void))
{
int i;
int oldlevel = disable_irq_save();
/* Remove a task if it is there */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == f)
{
tick_funcs[i] = NULL;
restore_irq(oldlevel);
return 0;
}
}
restore_irq(oldlevel);
return -1;
}
/****************************************************************************
* Tick-based interval timers/one-shots - be mindful this is not really
* intended for continuous timers but for events that need to run for a short
* time and be cancelled without further software intervention.
****************************************************************************/
#ifdef INCLUDE_TIMEOUT_API
static struct timeout *tmo_list = NULL; /* list of active timeout events */
/* timeout tick task - calls event handlers when they expire
* Event handlers may alter ticks, callback and data during operation.
*/
static void timeout_tick(void)
{
unsigned long tick = current_tick;
struct timeout *curr, *next;
for (curr = tmo_list; curr != NULL; curr = next)
{
next = (struct timeout *)curr->next;
if (TIME_BEFORE(tick, curr->expires))
continue;
/* this event has expired - call callback */
if (curr->callback(curr))
*(long *)&curr->expires = tick + curr->ticks; /* reload */
else
timeout_cancel(curr); /* cancel */
}
}
/* Cancels a timeout callback - can be called from the ISR */
void timeout_cancel(struct timeout *tmo)
{
int oldlevel = disable_irq_save();
if (tmo_list != NULL)
{
struct timeout *curr = tmo_list;
struct timeout *prev = NULL;
while (curr != tmo && curr != NULL)
{
prev = curr;
curr = (struct timeout *)curr->next;
}
if (curr != NULL)
{
/* in list */
if (prev == NULL)
tmo_list = (struct timeout *)curr->next;
else
*(const struct timeout **)&prev->next = curr->next;
if (tmo_list == NULL)
tick_remove_task(timeout_tick); /* last one - remove task */
}
/* not in list or tmo == NULL */
}
restore_irq(oldlevel);
}
/* Adds a timeout callback - calling with an active timeout resets the
interval - can be called from the ISR */
void timeout_register(struct timeout *tmo, timeout_cb_type callback,
int ticks, intptr_t data)
{
int oldlevel;
struct timeout *curr;
if (tmo == NULL)
return;
oldlevel = disable_irq_save();
/* see if this one is already registered */
curr = tmo_list;
while (curr != tmo && curr != NULL)
curr = (struct timeout *)curr->next;
if (curr == NULL)
{
/* not found - add it */
if (tmo_list == NULL)
tick_add_task(timeout_tick); /* first one - add task */
*(struct timeout **)&tmo->next = tmo_list;
tmo_list = tmo;
}
tmo->callback = callback;
tmo->ticks = ticks;
tmo->data = data;
*(long *)&tmo->expires = current_tick + ticks;
restore_irq(oldlevel);
}
#endif /* INCLUDE_TIMEOUT_API */
/****************************************************************************
* Thread stuff
****************************************************************************/
void sleep(int ticks)
{
#if CONFIG_CPU == S3C2440 && defined(BOOTLOADER)
volatile int counter;
TCON &= ~(1 << 20); // stop timer 4
// TODO: this constant depends on dividers settings inherited from
// firmware. Set them explicitly somwhere.
TCNTB4 = 12193 * ticks / HZ;
TCON |= 1 << 21; // set manual bit
TCON &= ~(1 << 21); // reset manual bit
TCON &= ~(1 << 22); //autoreload Off
TCON |= (1 << 20); // start timer 4
do {
counter = TCNTO4;
} while(counter > 0);
#elif defined(CPU_PP) && defined(BOOTLOADER)
unsigned stop = USEC_TIMER + ticks * (1000000/HZ);
while (TIME_BEFORE(USEC_TIMER, stop))
switch_thread();
#elif defined(CREATIVE_ZVx) && defined(BOOTLOADER)
/* hacky.. */
long sleep_ticks = current_tick + ticks + 1;
while (sleep_ticks > current_tick)
switch_thread();
#else
disable_irq();
sleep_thread(ticks);
switch_thread();
#endif
}
void yield(void)
{
#if ((CONFIG_CPU == S3C2440 || defined(ELIO_TPJ1022)) && defined(BOOTLOADER))
/* Some targets don't like yielding in the bootloader */
#else
switch_thread();
#endif
}
/****************************************************************************
* Queue handling stuff
****************************************************************************/
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/****************************************************************************
* Sender thread queue structure that aids implementation of priority
* inheritance on queues because the send list structure is the same as
* for all other kernel objects:
*
* Example state:
* E0 added with queue_send and removed by thread via queue_wait(_w_tmo)
* E3 was posted with queue_post
* 4 events remain enqueued (E1-E4)
*
* rd wr
* q->events[]: | XX | E1 | E2 | E3 | E4 | XX |
* q->send->senders[]: | NULL | T1 | T2 | NULL | T3 | NULL |
* \/ \/ \/
* q->send->list: >->|T0|<->|T1|<->|T2|<-------->|T3|<-<
* q->send->curr_sender: /\
*
* Thread has E0 in its own struct queue_event.
*
****************************************************************************/
/* Puts the specified return value in the waiting thread's return value
* and wakes the thread.
*
* A sender should be confirmed to exist before calling which makes it
* more efficent to reject the majority of cases that don't need this
* called.
*/
static void queue_release_sender(struct thread_entry **sender,
intptr_t retval)
{
struct thread_entry *thread = *sender;
*sender = NULL; /* Clear slot. */
thread->wakeup_ext_cb = NULL; /* Clear callback. */
thread->retval = retval; /* Assign thread-local return value. */
*thread->bqp = thread; /* Move blocking queue head to thread since
wakeup_thread wakes the first thread in
the list. */
wakeup_thread(thread->bqp);
}
/* Releases any waiting threads that are queued with queue_send -
* reply with 0.
*/
static void queue_release_all_senders(struct event_queue *q)
{
if(q->send)
{
unsigned int i;
for(i = q->read; i != q->write; i++)
{
struct thread_entry **spp =
&q->send->senders[i & QUEUE_LENGTH_MASK];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
}
/* Callback to do extra forced removal steps from sender list in addition
* to the normal blocking queue removal and priority dis-inherit */
static void queue_remove_sender_thread_cb(struct thread_entry *thread)
{
*((struct thread_entry **)thread->retval) = NULL;
thread->wakeup_ext_cb = NULL;
thread->retval = 0;
}
/* Enables queue_send on the specified queue - caller allocates the extra
* data structure. Only queues which are taken to be owned by a thread should
* enable this however an official owner is not compulsory but must be
* specified for priority inheritance to operate.
*
* Use of queue_wait(_w_tmo) by multiple threads on a queue using synchronous
* messages results in an undefined order of message replies.
*/
void queue_enable_queue_send(struct event_queue *q,
struct queue_sender_list *send,
struct thread_entry *owner)
{
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
if(send != NULL && q->send == NULL)
{
memset(send, 0, sizeof(*send));
#ifdef HAVE_PRIORITY_SCHEDULING
send->blocker.wakeup_protocol = wakeup_priority_protocol_release;
send->blocker.priority = PRIORITY_IDLE;
send->blocker.thread = owner;
if(owner != NULL)
q->blocker_p = &send->blocker;
#endif
q->send = send;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
(void)owner;
}
/* Unblock a blocked thread at a given event index */
static inline void queue_do_unblock_sender(struct queue_sender_list *send,
unsigned int i)
{
if(send)
{
struct thread_entry **spp = &send->senders[i];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
/* Perform the auto-reply sequence */
static inline void queue_do_auto_reply(struct queue_sender_list *send)
{
if(send && send->curr_sender)
{
/* auto-reply */
queue_release_sender(&send->curr_sender, 0);
}
}
/* Moves waiting thread's refrence from the senders array to the
* current_sender which represents the thread waiting for a reponse to the
* last message removed from the queue. This also protects the thread from
* being bumped due to overflow which would not be a valid action since its
* message _is_ being processed at this point. */
static inline void queue_do_fetch_sender(struct queue_sender_list *send,
unsigned int rd)
{
if(send)
{
struct thread_entry **spp = &send->senders[rd];
if(*spp)
{
/* Move thread reference from array to the next thread
that queue_reply will release */
send->curr_sender = *spp;
(*spp)->retval = (intptr_t)spp;
*spp = NULL;
}
/* else message was posted asynchronously with queue_post */
}
}
#else
/* Empty macros for when synchoronous sending is not made */
#define queue_release_all_senders(q)
#define queue_do_unblock_sender(send, i)
#define queue_do_auto_reply(send)
#define queue_do_fetch_sender(send, rd)
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Queue must not be available for use during this call */
void queue_init(struct event_queue *q, bool register_queue)
{
int oldlevel = disable_irq_save();
if(register_queue)
{
corelock_lock(&all_queues.cl);
}
corelock_init(&q->cl);
q->queue = NULL;
q->read = 0;
q->write = 0;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
q->send = NULL; /* No message sending by default */
IF_PRIO( q->blocker_p = NULL; )
#endif
if(register_queue)
{
if(all_queues.count >= MAX_NUM_QUEUES)
{
panicf("queue_init->out of queues");
}
/* Add it to the all_queues array */
all_queues.queues[all_queues.count++] = q;
corelock_unlock(&all_queues.cl);
}
restore_irq(oldlevel);
}
/* Queue must not be available for use during this call */
void queue_delete(struct event_queue *q)
{
int oldlevel;
int i;
oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
corelock_lock(&q->cl);
/* Find the queue to be deleted */
for(i = 0;i < all_queues.count;i++)
{
if(all_queues.queues[i] == q)
{
/* Move the following queues up in the list */
all_queues.count--;
for(;i < all_queues.count;i++)
{
all_queues.queues[i] = all_queues.queues[i+1];
}
break;
}
}
corelock_unlock(&all_queues.cl);
/* Release thread(s) waiting on queue head */
thread_queue_wake(&q->queue);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
/* Release threads waiting for replies */
queue_release_all_senders(q);
/* Reply to any dequeued message waiting for one */
queue_do_auto_reply(q->send);
q->send = NULL;
IF_PRIO( q->blocker_p = NULL; )
}
#endif
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/* NOTE: multiple threads waiting on a queue head cannot have a well-
defined release order if timeouts are used. If multiple threads must
access the queue head, use a dispatcher or queue_wait only. */
void queue_wait(struct event_queue *q, struct queue_event *ev)
{
int oldlevel;
unsigned int rd;
#ifdef HAVE_PRIORITY_SCHEDULING
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_get_current(),
"queue_wait->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* auto-reply */
queue_do_auto_reply(q->send);
if (q->read == q->write)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
do
{
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
}
/* A message that woke us could now be gone */
while (q->read == q->write);
}
rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_wait_w_tmo(struct event_queue *q, struct queue_event *ev, int ticks)
{
int oldlevel;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_get_current(),
"queue_wait_w_tmo->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Auto-reply */
queue_do_auto_reply(q->send);
if (q->read == q->write && ticks > 0)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread_w_tmo(current, ticks);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
}
/* no worry about a removed message here - status is checked inside
locks - perhaps verify if timeout or false alarm */
if (q->read != q->write)
{
unsigned int rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
}
else
{
ev->id = SYS_TIMEOUT;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_post(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
/* overflow protect - unblock any thread waiting at this index */
queue_do_unblock_sender(q->send, wr);
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* IRQ handlers are not allowed use of this function - we only aim to
protect the queue integrity by turning them off. */
intptr_t queue_send(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
if(q->send)
{
struct queue_sender_list *send = q->send;
struct thread_entry **spp = &send->senders[wr];
struct thread_entry *current = cores[CURRENT_CORE].running;
if(*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
/* Save thread in slot, add to list and wait for reply */
*spp = current;
IF_COP( current->obj_cl = &q->cl; )
IF_PRIO( current->blocker = q->blocker_p; )
current->wakeup_ext_cb = queue_remove_sender_thread_cb;
current->retval = (intptr_t)spp;
current->bqp = &send->list;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
return current->retval;
}
/* Function as queue_post if sending is not enabled */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return 0;
}
#if 0 /* not used now but probably will be later */
/* Query if the last message dequeued was added by queue_send or not */
bool queue_in_queue_send(struct event_queue *q)
{
bool in_send;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
#endif
in_send = q->send && q->send->curr_sender;
#if NUM_CORES > 1
corelock_unlock(&q->cl);
restore_irq(oldlevel);
#endif
return in_send;
}
#endif
/* Replies with retval to the last dequeued message sent with queue_send */
void queue_reply(struct event_queue *q, intptr_t retval)
{
if(q->send && q->send->curr_sender)
{
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Double-check locking */
IF_COP( if(q->send && q->send->curr_sender) )
{
queue_release_sender(&q->send->curr_sender, retval);
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
}
bool queue_peek(struct event_queue *q, struct queue_event *ev)
{
if(q->read == q->write)
return false;
bool have_msg = false;
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
if(q->read != q->write)
{
*ev = q->events[q->read & QUEUE_LENGTH_MASK];
have_msg = true;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return have_msg;
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Poll queue to see if a message exists - careful in using the result if
* queue_remove_from_head is called when messages are posted - possibly use
* queue_wait_w_tmo(&q, 0) in that case or else a removed message that
* unsignals the queue may cause an unwanted block */
bool queue_empty(const struct event_queue* q)
{
return ( q->read == q->write );
}
void queue_clear(struct event_queue* q)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Release all threads waiting in the queue for a reply -
dequeued sent message will be handled by owning thread */
queue_release_all_senders(q);
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_remove_from_head(struct event_queue *q, long id)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
while(q->read != q->write)
{
unsigned int rd = q->read & QUEUE_LENGTH_MASK;
if(q->events[rd].id != id)
{
break;
}
/* Release any thread waiting on this message */
queue_do_unblock_sender(q->send, rd);
q->read++;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/**
* The number of events waiting in the queue.
*
* @param struct of event_queue
* @return number of events in the queue
*/
int queue_count(const struct event_queue *q)
{
return q->write - q->read;
}
int queue_broadcast(long id, intptr_t data)
{
int i;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
#endif
for(i = 0;i < all_queues.count;i++)
{
queue_post(all_queues.queues[i], id, data);
}
#if NUM_CORES > 1
corelock_unlock(&all_queues.cl);
restore_irq(oldlevel);
#endif
return i;
}
/****************************************************************************
* Simple mutex functions ;)
****************************************************************************/
/* Initialize a mutex object - call before any use and do not call again once
* the object is available to other threads */
void mutex_init(struct mutex *m)
{
corelock_init(&m->cl);
m->queue = NULL;
m->count = 0;
m->locked = 0;
MUTEX_SET_THREAD(m, NULL);
#ifdef HAVE_PRIORITY_SCHEDULING
m->blocker.priority = PRIORITY_IDLE;
m->blocker.wakeup_protocol = wakeup_priority_protocol_transfer;
m->no_preempt = false;
#endif
}
/* Gain ownership of a mutex object or block until it becomes free */
void mutex_lock(struct mutex *m)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *current = cores[core].running;
if(current == MUTEX_GET_THREAD(m))
{
/* current thread already owns this mutex */
m->count++;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
if(m->locked == 0)
{
/* lock is open */
MUTEX_SET_THREAD(m, current);
m->locked = 1;
corelock_unlock(&m->cl);
return;
}
/* block until the lock is open... */
IF_COP( current->obj_cl = &m->cl; )
IF_PRIO( current->blocker = &m->blocker; )
current->bqp = &m->queue;
disable_irq();
block_thread(current);
corelock_unlock(&m->cl);
/* ...and turn control over to next thread */
switch_thread();
}
/* Release ownership of a mutex object - only owning thread must call this */
void mutex_unlock(struct mutex *m)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(MUTEX_GET_THREAD(m) == thread_get_current(),
"mutex_unlock->wrong thread (%s != %s)\n",
MUTEX_GET_THREAD(m)->name,
thread_get_current()->name);
if(m->count > 0)
{
/* this thread still owns lock */
m->count--;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
/* transfer to next queued thread if any */
if(m->queue == NULL)
{
/* no threads waiting - open the lock */
MUTEX_SET_THREAD(m, NULL);
m->locked = 0;
corelock_unlock(&m->cl);
return;
}
else
{
const int oldlevel = disable_irq_save();
/* Tranfer of owning thread is handled in the wakeup protocol
* if priorities are enabled otherwise just set it from the
* queue head. */
IFN_PRIO( MUTEX_SET_THREAD(m, m->queue); )
IF_PRIO( unsigned int result = ) wakeup_thread(&m->queue);
restore_irq(oldlevel);
corelock_unlock(&m->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if((result & THREAD_SWITCH) && !m->no_preempt)
switch_thread();
#endif
}
}
/****************************************************************************
* Simpl-er mutex functions ;)
****************************************************************************/
#if NUM_CORES > 1
void spinlock_init(struct spinlock *l)
{
corelock_init(&l->cl);
l->thread = NULL;
l->count = 0;
}
void spinlock_lock(struct spinlock *l)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *current = cores[core].running;
if(l->thread == current)
{
/* current core already owns it */
l->count++;
return;
}
/* lock against other processor cores */
corelock_lock(&l->cl);
/* take ownership */
l->thread = current;
}
void spinlock_unlock(struct spinlock *l)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(l->thread == thread_get_current(),
"spinlock_unlock->wrong thread\n");
if(l->count > 0)
{
/* this core still owns lock */
l->count--;
return;
}
/* clear owner */
l->thread = NULL;
/* release lock */
corelock_unlock(&l->cl);
}
#endif /* NUM_CORES > 1 */
/****************************************************************************
* Simple semaphore functions ;)
****************************************************************************/
#ifdef HAVE_SEMAPHORE_OBJECTS
void semaphore_init(struct semaphore *s, int max, int start)
{
KERNEL_ASSERT(max > 0 && start >= 0 && start <= max,
"semaphore_init->inv arg\n");
s->queue = NULL;
s->max = max;
s->count = start;
corelock_init(&s->cl);
}
void semaphore_wait(struct semaphore *s)
{
struct thread_entry *current;
corelock_lock(&s->cl);
if(--s->count >= 0)
{
/* wait satisfied */
corelock_unlock(&s->cl);
return;
}
/* too many waits - block until dequeued... */
current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &s->cl; )
current->bqp = &s->queue;
disable_irq();
block_thread(current);
corelock_unlock(&s->cl);
/* ...and turn control over to next thread */
switch_thread();
}
void semaphore_release(struct semaphore *s)
{
IF_PRIO( unsigned int result = THREAD_NONE; )
corelock_lock(&s->cl);
if(s->count < s->max && ++s->count <= 0)
{
/* there should be threads in this queue */
KERNEL_ASSERT(s->queue != NULL, "semaphore->wakeup\n");
/* a thread was queued - wake it up */
int oldlevel = disable_irq_save();
IF_PRIO( result = ) wakeup_thread(&s->queue);
restore_irq(oldlevel);
}
corelock_unlock(&s->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if(result & THREAD_SWITCH)
switch_thread();
#endif
}
#endif /* HAVE_SEMAPHORE_OBJECTS */
/****************************************************************************
* Simple event functions ;)
****************************************************************************/
#ifdef HAVE_EVENT_OBJECTS
void event_init(struct event *e, unsigned int flags)
{
e->queues[STATE_NONSIGNALED] = NULL;
e->queues[STATE_SIGNALED] = NULL;
e->state = flags & STATE_SIGNALED;
e->automatic = (flags & EVENT_AUTOMATIC) ? 1 : 0;
corelock_init(&e->cl);
}
void event_wait(struct event *e, unsigned int for_state)
{
struct thread_entry *current;
corelock_lock(&e->cl);
if(e->automatic != 0)
{
/* wait for false always satisfied by definition
or if it just changed to false */
if(e->state == STATE_SIGNALED || for_state == STATE_NONSIGNALED)
{
/* automatic - unsignal */
e->state = STATE_NONSIGNALED;
corelock_unlock(&e->cl);
return;
}
/* block until state matches */
}
else if(for_state == e->state)
{
/* the state being waited for is the current state */
corelock_unlock(&e->cl);
return;
}
/* block until state matches what callers requests */
current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &e->cl; )
current->bqp = &e->queues[for_state];
disable_irq();
block_thread(current);
corelock_unlock(&e->cl);
/* turn control over to next thread */
switch_thread();
}
void event_set_state(struct event *e, unsigned int state)
{
unsigned int result;
int oldlevel;
corelock_lock(&e->cl);
if(e->state == state)
{
/* no change */
corelock_unlock(&e->cl);
return;
}
IF_PRIO( result = THREAD_OK; )
oldlevel = disable_irq_save();
if(state == STATE_SIGNALED)
{
if(e->automatic != 0)
{
/* no thread should have ever blocked for nonsignaled */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED] == NULL,
"set_event_state->queue[NS]:S\n");
/* pass to next thread and keep unsignaled - "pulse" */
result = wakeup_thread(&e->queues[STATE_SIGNALED]);
e->state = (result & THREAD_OK) ? STATE_NONSIGNALED : STATE_SIGNALED;
}
else
{
/* release all threads waiting for signaled */
e->state = STATE_SIGNALED;
IF_PRIO( result = )
thread_queue_wake(&e->queues[STATE_SIGNALED]);
}
}
else
{
/* release all threads waiting for nonsignaled */
/* no thread should have ever blocked if automatic */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED] == NULL ||
e->automatic == 0, "set_event_state->queue[NS]:NS\n");
e->state = STATE_NONSIGNALED;
IF_PRIO( result = )
thread_queue_wake(&e->queues[STATE_NONSIGNALED]);
}
restore_irq(oldlevel);
corelock_unlock(&e->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if(result & THREAD_SWITCH)
switch_thread();
#endif
}
#endif /* HAVE_EVENT_OBJECTS */
#ifdef HAVE_WAKEUP_OBJECTS
/****************************************************************************
* Lightweight IRQ-compatible wakeup object
*/
/* Initialize the wakeup object */
void wakeup_init(struct wakeup *w)
{
w->queue = NULL;
w->signalled = 0;
IF_COP( corelock_init(&w->cl); )
}
/* Wait for a signal blocking indefinitely or for a specified period */
int wakeup_wait(struct wakeup *w, int timeout)
{
int ret = OBJ_WAIT_SUCCEEDED; /* Presume success */
int oldlevel = disable_irq_save();
corelock_lock(&w->cl);
if(w->signalled == 0 && timeout != TIMEOUT_NOBLOCK)
{
struct thread_entry * current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &w->cl; )
current->bqp = &w->queue;
if (timeout != TIMEOUT_BLOCK)
block_thread_w_tmo(current, timeout);
else
block_thread(current);
corelock_unlock(&w->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&w->cl);
}
if(w->signalled == 0)
{
/* Timed-out or failed */
ret = (timeout != TIMEOUT_BLOCK) ?
OBJ_WAIT_TIMEDOUT : OBJ_WAIT_FAILED;
}
w->signalled = 0; /* Reset */
corelock_unlock(&w->cl);
restore_irq(oldlevel);
return ret;
}
/* Signal the thread waiting or leave the signal if the thread hasn't
* waited yet.
*
* returns THREAD_NONE or THREAD_OK
*/
int wakeup_signal(struct wakeup *w)
{
int oldlevel = disable_irq_save();
int ret;
corelock_lock(&w->cl);
w->signalled = 1;
ret = wakeup_thread(&w->queue);
corelock_unlock(&w->cl);
restore_irq(oldlevel);
return ret;
}
#endif /* HAVE_WAKEUP_OBJECTS */