blob: dd1d5fc782d09d93fc00e1035f69e064b1d4298f [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Heikki Hannikainen, Uwe Freese
* Revisions copyright (C) 2005 by Gerald Van Baren
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "kernel.h"
#include "thread.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "adc.h"
#include "string.h"
#include "sprintf.h"
#include "ata.h"
#include "power.h"
#include "button.h"
#include "audio.h"
#include "mp3_playback.h"
#include "usb.h"
#include "powermgmt.h"
#include "backlight.h"
#include "lcd.h"
#include "rtc.h"
#if CONFIG_TUNER
#include "fmradio.h"
#endif
#include "sound.h"
#ifdef HAVE_LCD_BITMAP
#include "font.h"
#endif
#if defined(HAVE_RECORDING) && (CONFIG_CODEC == SWCODEC)
#include "pcm_record.h"
#endif
#include "logf.h"
#include "lcd-remote.h"
#ifdef SIMULATOR
#include <time.h>
#endif
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
#include "pcf50606.h"
#include "lcd-remote-target.h"
#endif
/*
* Define DEBUG_FILE to create a csv (spreadsheet) with battery information
* in it (one sample per minute). This is only for very low level debug.
*/
#undef DEBUG_FILE
#if defined(DEBUG_FILE) && (CONFIG_CHARGING == CHARGING_CONTROL)
#include "file.h"
#define DEBUG_FILE_NAME "/powermgmt.csv"
#define DEBUG_MESSAGE_LEN 133
static char debug_message[DEBUG_MESSAGE_LEN];
#define DEBUG_STACK ((0x1000)/sizeof(long))
static int fd = -1; /* write debug information to this file */
static int wrcount = 0;
#else
#define DEBUG_STACK 0
#endif
static int shutdown_timeout = 0;
#if CONFIG_CHARGING >= CHARGING_MONITOR
charge_state_type charge_state; /* charging mode */
#endif
static void send_battery_level_event(void);
static int last_sent_battery_level = 100;
#if CONFIG_CHARGING
charger_input_state_type charger_input_state IDATA_ATTR;
#endif
#ifdef SIMULATOR /***********************************************************/
#define BATT_MINMVOLT 2500 /* minimum millivolts of battery */
#define BATT_MAXMVOLT 4500 /* maximum millivolts of battery */
#define BATT_MAXRUNTIME (10 * 60) /* maximum runtime with full battery in minutes */
static unsigned int battery_millivolts = (unsigned int)BATT_MAXMVOLT;
static int battery_percent = 100; /* battery capacity level in percent */
static int powermgmt_est_runningtime_min = BATT_MAXRUNTIME; /* estimated remaining time in minutes */
static void battery_status_update(void)
{
static time_t last_change = 0;
static bool charging = false;
time_t now;
time(&now);
if (last_change < now)
{
last_change = now;
/* change the values: */
if (charging)
{
if (battery_millivolts >= BATT_MAXMVOLT)
{
/* Pretend the charger was disconnected */
charging = false;
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
last_sent_battery_level = 100;
}
}
else
{
if (battery_millivolts <= BATT_MINMVOLT)
{
/* Pretend the charger was connected */
charging = true;
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
last_sent_battery_level = 0;
}
}
if (charging)
battery_millivolts += (BATT_MAXMVOLT - BATT_MINMVOLT) / 50;
else
battery_millivolts -= (BATT_MAXMVOLT - BATT_MINMVOLT) / 100;
battery_percent = 100 * (battery_millivolts - BATT_MINMVOLT) /
(BATT_MAXMVOLT - BATT_MINMVOLT);
powermgmt_est_runningtime_min = battery_percent * BATT_MAXRUNTIME / 100;
}
send_battery_level_event();
}
void battery_read_info(int *voltage, int *level)
{
battery_status_update();
if (voltage)
*voltage = battery_millivolts;
if (level)
*level = battery_percent;
}
unsigned int battery_voltage(void)
{
battery_status_update();
return battery_millivolts;
}
int battery_level(void)
{
battery_status_update();
return battery_percent;
}
int battery_time(void)
{
battery_status_update();
return powermgmt_est_runningtime_min;
}
bool battery_level_safe(void)
{
return battery_level() >= 10;
}
void set_poweroff_timeout(int timeout)
{
(void)timeout;
}
void set_battery_capacity(int capacity)
{
(void)capacity;
}
#if BATTERY_TYPES_COUNT > 1
void set_battery_type(int type)
{
(void)type;
}
#endif
void reset_poweroff_timer(void)
{
}
#ifdef HAVE_ACCESSORY_SUPPLY
void accessory_supply_set(bool enable)
{
(void)enable;
}
#endif
#else /* not SIMULATOR ******************************************************/
static void power_thread_sleep(int ticks);
/*
* Average battery voltage and charger voltage, filtered via a digital
* exponential filter (aka. exponential moving average, scaled):
* avgbat = y[n] = (N-1)/N*y[n-1] + x[n]. battery_millivolts = y[n] / N.
*/
static unsigned int avgbat; /* average battery voltage (filtering) */
static unsigned int battery_millivolts;/* filtered battery voltage, millivolts */
/* battery level (0-100%) of this minute, updated once per minute */
static int battery_percent = -1;
static int battery_capacity = BATTERY_CAPACITY_DEFAULT; /* default value, mAh */
#if BATTERY_TYPES_COUNT > 1
static int battery_type = 0;
#else
#define battery_type 0
#endif
/* Power history: power_history[0] is the newest sample */
unsigned short power_history[POWER_HISTORY_LEN];
static char power_stack[DEFAULT_STACK_SIZE/2 + DEBUG_STACK];
static const char power_thread_name[] = "power";
static int poweroff_timeout = 0;
static int powermgmt_est_runningtime_min = -1;
static bool sleeptimer_active = false;
static long sleeptimer_endtick;
static long last_event_tick;
static int voltage_to_battery_level(int battery_millivolts);
static void battery_status_update(void);
static int runcurrent(void);
void battery_read_info(int *voltage, int *level)
{
int millivolts = battery_adc_voltage();
if (voltage)
*voltage = millivolts;
if (level)
*level = voltage_to_battery_level(millivolts);
}
void reset_poweroff_timer(void)
{
last_event_tick = current_tick;
}
#if BATTERY_TYPES_COUNT > 1
void set_battery_type(int type)
{
if (type != battery_type) {
battery_type = type;
battery_status_update(); /* recalculate the battery status */
}
}
#endif
void set_battery_capacity(int capacity)
{
battery_capacity = capacity;
if (battery_capacity > BATTERY_CAPACITY_MAX)
battery_capacity = BATTERY_CAPACITY_MAX;
if (battery_capacity < BATTERY_CAPACITY_MIN)
battery_capacity = BATTERY_CAPACITY_MIN;
battery_status_update(); /* recalculate the battery status */
}
int battery_time(void)
{
return powermgmt_est_runningtime_min;
}
/* Returns battery level in percent */
int battery_level(void)
{
return battery_percent;
}
/* Returns filtered battery voltage [millivolts] */
unsigned int battery_voltage(void)
{
return battery_millivolts;
}
/* Tells if the battery level is safe for disk writes */
bool battery_level_safe(void)
{
return battery_millivolts > battery_level_dangerous[battery_type];
}
void set_poweroff_timeout(int timeout)
{
poweroff_timeout = timeout;
}
void set_sleep_timer(int seconds)
{
if(seconds) {
sleeptimer_active = true;
sleeptimer_endtick = current_tick + seconds * HZ;
}
else {
sleeptimer_active = false;
sleeptimer_endtick = 0;
}
}
int get_sleep_timer(void)
{
if(sleeptimer_active)
return (sleeptimer_endtick - current_tick) / HZ;
else
return 0;
}
/* look into the percent_to_volt_* table and get a realistic battery level */
static int voltage_to_percent(int voltage, const short* table)
{
if (voltage <= table[0])
return 0;
else
if (voltage >= table[10])
return 100;
else {
/* search nearest value */
int i = 0;
while ((i < 10) && (table[i+1] < voltage))
i++;
/* interpolate linear between the smaller and greater value */
return (i * 10) /* Tens digit, 10% per entry */
+ (((voltage - table[i]) * 10)
/ (table[i+1] - table[i])); /* Ones digit: interpolated */
}
}
/* update battery level and estimated runtime, called once per minute or
* when battery capacity / type settings are changed */
static int voltage_to_battery_level(int battery_millivolts)
{
int level;
#if CONFIG_CHARGING >= CHARGING_MONITOR
if (charge_state == DISCHARGING) {
level = voltage_to_percent(battery_millivolts,
percent_to_volt_discharge[battery_type]);
}
else if (charge_state == CHARGING) {
/* battery level is defined to be < 100% until charging is finished */
level = MIN(voltage_to_percent(battery_millivolts,
percent_to_volt_charge), 99);
}
else { /* in topoff/trickle charge, battery is by definition 100% full */
level = 100;
}
#else
/* always use the discharge table */
level = voltage_to_percent(battery_millivolts,
percent_to_volt_discharge[battery_type]);
#endif /* CONFIG_CHARGING ... */
return level;
}
static void battery_status_update(void)
{
int level = voltage_to_battery_level(battery_millivolts);
/* calculate estimated remaining running time */
/* discharging: remaining running time */
/* charging: remaining charging time */
#if CONFIG_CHARGING >= CHARGING_MONITOR
if (charge_state == CHARGING) {
powermgmt_est_runningtime_min = (100 - level) * battery_capacity * 60
/ 100 / (CURRENT_MAX_CHG - runcurrent());
}
else
#endif
{
if ((battery_millivolts + 20) > percent_to_volt_discharge[0][0])
powermgmt_est_runningtime_min = (level + battery_percent) * 60 *
battery_capacity / 200 / runcurrent();
else if (battery_millivolts <= battery_level_shutoff[0])
powermgmt_est_runningtime_min = 0;
else
powermgmt_est_runningtime_min = (battery_millivolts -
battery_level_shutoff[0]) / 2;
}
battery_percent = level;
send_battery_level_event();
}
/*
* We shut off in the following cases:
* 1) The unit is idle, not playing music
* 2) The unit is playing music, but is paused
* 3) The battery level has reached shutdown limit
*
* We do not shut off in the following cases:
* 1) The USB is connected
* 2) The charger is connected
* 3) We are recording, or recording with pause
* 4) The radio is playing
*/
static void handle_auto_poweroff(void)
{
long timeout = poweroff_timeout*60*HZ;
int audio_stat = audio_status();
#if CONFIG_CHARGING
/*
* Inhibit shutdown as long as the charger is plugged in. If it is
* unplugged, wait for a timeout period and then shut down.
*/
if(charger_input_state == CHARGER || audio_stat == AUDIO_STATUS_PLAY) {
last_event_tick = current_tick;
}
#endif
#ifndef NO_LOW_BATTERY_SHUTDOWN
/* switch off unit if battery level is too low for reliable operation */
if(battery_millivolts < battery_level_shutoff[battery_type]) {
if(!shutdown_timeout) {
backlight_on();
sys_poweroff();
}
}
#endif
if(timeout &&
#if CONFIG_TUNER && !defined(BOOTLOADER)
(!(get_radio_status() & FMRADIO_PLAYING)) &&
#endif
!usb_inserted() &&
((audio_stat == 0) ||
((audio_stat == (AUDIO_STATUS_PLAY | AUDIO_STATUS_PAUSE)) &&
!sleeptimer_active)))
{
if(TIME_AFTER(current_tick, last_event_tick + timeout) &&
TIME_AFTER(current_tick, last_disk_activity + timeout))
{
sys_poweroff();
}
}
else
{
/* Handle sleeptimer */
if(sleeptimer_active && !usb_inserted())
{
if(TIME_AFTER(current_tick, sleeptimer_endtick))
{
audio_stop();
#if CONFIG_CHARGING && !defined(HAVE_POWEROFF_WHILE_CHARGING)
if((charger_input_state == CHARGER) ||
(charger_input_state == CHARGER_PLUGGED))
{
DEBUGF("Sleep timer timeout. Stopping...\n");
set_sleep_timer(0);
backlight_off(); /* Nighty, nighty... */
}
else
#endif
{
DEBUGF("Sleep timer timeout. Shutting off...\n");
sys_poweroff();
}
}
}
}
}
/*
* Estimate how much current we are drawing just to run.
*/
static int runcurrent(void)
{
int current;
#if MEM == 8 && !defined(HAVE_MMC)
/* assuming 192 kbps, the running time is 22% longer with 8MB */
current = (CURRENT_NORMAL*100/122);
#else
current = CURRENT_NORMAL;
#endif /* MEM == 8 */
if(usb_inserted()
#if defined(HAVE_USB_POWER)
#if (CURRENT_USB < CURRENT_NORMAL)
|| usb_powered()
#else
&& !usb_powered()
#endif
#endif
)
{
current = CURRENT_USB;
}
#if defined(HAVE_BACKLIGHT) && !defined(BOOTLOADER)
if (backlight_get_current_timeout() == 0) /* LED always on */
current += CURRENT_BACKLIGHT;
#endif
#if defined(HAVE_RECORDING) && defined(CURRENT_RECORD)
if (audio_status() & AUDIO_STATUS_RECORD)
current += CURRENT_RECORD;
#endif
#ifdef HAVE_SPDIF_POWER
if (spdif_powered())
current += CURRENT_SPDIF_OUT;
#endif
#ifdef HAVE_REMOTE_LCD
if (remote_detect())
current += CURRENT_REMOTE;
#endif
return(current);
}
/* Check to see whether or not we've received an alarm in the last second */
#ifdef HAVE_RTC_ALARM
static void power_thread_rtc_process(void)
{
if (rtc_check_alarm_flag()) {
rtc_enable_alarm(false);
}
}
#endif
/*
* This power thread maintains a history of battery voltage
* and implements a charging algorithm.
*/
#if CONFIG_CHARGING == CHARGING_CONTROL
#define BATT_AVE_SAMPLES 32 /* filter constant / @ 2Hz sample rate */
/*
* For a complete description of the charging algorithm read
* docs/CHARGING_ALGORITHM.
*/
int long_delta; /* long term delta battery voltage */
int short_delta; /* short term delta battery voltage */
bool disk_activity_last_cycle = false; /* flag set to aid charger time
* calculation */
char power_message[POWER_MESSAGE_LEN] = ""; /* message that's shown in
debug menu */
/* percentage at which charging
starts */
int powermgmt_last_cycle_startstop_min = 0; /* how many minutes ago was the
charging started or
stopped? */
int powermgmt_last_cycle_level = 0; /* which level had the
batteries at this time? */
int trickle_sec = 0; /* how many seconds should the
charger be enabled per
minute for trickle
charging? */
int pid_p = 0; /* PID proportional term */
int pid_i = 0; /* PID integral term */
static inline void charging_algorithm_small_step(void)
{
if (ata_disk_is_active()) {
/* flag hdd use for charging calculation */
disk_activity_last_cycle = true;
}
#if defined(DEBUG_FILE)
/*
* If we have a lot of pending writes or if the disk is spining,
* fsync the debug log file.
*/
if((wrcount > 10) || ((wrcount > 0) && ata_disk_is_active())) {
fsync(fd);
wrcount = 0;
}
#endif /* defined(DEBUG_FILE) */
}
static inline void charging_algorithm_big_step(void)
{
static unsigned int target_voltage = TRICKLE_VOLTAGE; /* desired topoff/trickle
* voltage level */
static int charge_max_time_idle = 0; /* max. charging duration, calculated at
* beginning of charging */
static int charge_max_time_now = 0; /* max. charging duration including
* hdd activity */
static int minutes_disk_activity = 0; /* count minutes of hdd use during
* charging */
static int last_disk_activity = CHARGE_END_LONGD + 1; /* last hdd use x mins ago */
int i;
if (charger_input_state == CHARGER_PLUGGED) {
pid_p = 0;
pid_i = 0;
snprintf(power_message, POWER_MESSAGE_LEN, "Charger plugged in");
/*
* The charger was just plugged in. If the battery level is
* nearly charged, just trickle. If the battery is low, start
* a full charge cycle. If the battery level is in between,
* top-off and then trickle.
*/
if(battery_percent > START_TOPOFF_CHG) {
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
if(battery_percent >= START_TRICKLE_CHG) {
charge_state = TRICKLE;
target_voltage = TRICKLE_VOLTAGE;
} else {
charge_state = TOPOFF;
target_voltage = TOPOFF_VOLTAGE;
}
} else {
/*
* Start the charger full strength
*/
i = CHARGE_MAX_TIME_1500 * battery_capacity / 1500;
charge_max_time_idle =
i * (100 + 35 - battery_percent) / 100;
if (charge_max_time_idle > i) {
charge_max_time_idle = i;
}
charge_max_time_now = charge_max_time_idle;
snprintf(power_message, POWER_MESSAGE_LEN,
"ChgAt %d%% max %dm", battery_level(),
charge_max_time_now);
/* enable the charger after the max time calc is done,
because battery_level depends on if the charger is
on */
DEBUGF("power: charger inserted and battery"
" not full, charging\n");
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
trickle_sec = 60;
long_delta = short_delta = 999999;
charge_state = CHARGING;
}
}
if (charge_state == CHARGING) {
/* alter charge time max length with extra disk use */
if (disk_activity_last_cycle) {
minutes_disk_activity++;
charge_max_time_now = charge_max_time_idle +
(minutes_disk_activity * 2 / 5);
disk_activity_last_cycle = false;
last_disk_activity = 0;
} else {
last_disk_activity++;
}
/*
* Check the delta voltage over the last X minutes so we can do
* our end-of-charge logic based on the battery level change.
*(no longer use minimum time as logic for charge end has 50
* minutes minimum charge built in)
*/
if (powermgmt_last_cycle_startstop_min > CHARGE_END_SHORTD) {
short_delta = power_history[0] -
power_history[CHARGE_END_SHORTD - 1];
}
if (powermgmt_last_cycle_startstop_min > CHARGE_END_LONGD) {
/*
* Scan the history: the points where measurement is taken need to
* be fairly static. (check prior to short delta 'area')
* (also only check first and last 10 cycles - delta in middle OK)
*/
long_delta = power_history[0] -
power_history[CHARGE_END_LONGD - 1];
for(i = CHARGE_END_SHORTD; i < CHARGE_END_SHORTD + 10; i++) {
if(((power_history[i] - power_history[i+1]) > 50) ||
((power_history[i] - power_history[i+1]) < -50)) {
long_delta = 777777;
break;
}
}
for(i = CHARGE_END_LONGD - 11; i < CHARGE_END_LONGD - 1 ; i++) {
if(((power_history[i] - power_history[i+1]) > 50) ||
((power_history[i] - power_history[i+1]) < -50)) {
long_delta = 888888;
break;
}
}
}
snprintf(power_message, POWER_MESSAGE_LEN,
"Chg %dm, max %dm", powermgmt_last_cycle_startstop_min,
charge_max_time_now);
/*
* End of charge criteria (any qualify):
* 1) Charged a long time
* 2) DeltaV went negative for a short time ( & long delta static)
* 3) DeltaV was negative over a longer period (no disk use only)
* Note: short_delta and long_delta are millivolts
*/
if ((powermgmt_last_cycle_startstop_min >= charge_max_time_now) ||
(short_delta <= -50 && long_delta < 50 ) || (long_delta < -20 &&
last_disk_activity > CHARGE_END_LONGD)) {
if (powermgmt_last_cycle_startstop_min > charge_max_time_now) {
DEBUGF("power: powermgmt_last_cycle_startstop_min > charge_max_time_now, "
"enough!\n");
/*
*have charged too long and deltaV detection did not
*work!
*/
snprintf(power_message, POWER_MESSAGE_LEN,
"Chg tmout %d min", charge_max_time_now);
/*
* Switch to trickle charging. We skip the top-off
* since we've effectively done the top-off operation
* already since we charged for the maximum full
* charge time.
*/
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
charge_state = TRICKLE;
/*
* set trickle charge target to a relative voltage instead
* of an arbitrary value - the fully charged voltage may
* vary according to ambient temp, battery condition etc
* trickle target is -0.15v from full voltage acheived
* topup target is -0.05v from full voltage
*/
target_voltage = power_history[0] - 150;
} else {
if(short_delta <= -5) {
DEBUGF("power: short-term negative"
" delta, enough!\n");
snprintf(power_message, POWER_MESSAGE_LEN,
"end negd %d %dmin", short_delta,
powermgmt_last_cycle_startstop_min);
target_voltage = power_history[CHARGE_END_SHORTD - 1]
- 50;
} else {
DEBUGF("power: long-term small "
"positive delta, enough!\n");
snprintf(power_message, POWER_MESSAGE_LEN,
"end lowd %d %dmin", long_delta,
powermgmt_last_cycle_startstop_min);
target_voltage = power_history[CHARGE_END_LONGD - 1]
- 50;
}
/*
* Switch to top-off charging.
*/
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
charge_state = TOPOFF;
}
}
}
else if (charge_state != DISCHARGING) /* top off or trickle */
{
/*
*Time to switch from topoff to trickle?
*/
if ((charge_state == TOPOFF) &&
(powermgmt_last_cycle_startstop_min > TOPOFF_MAX_TIME))
{
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
charge_state = TRICKLE;
target_voltage = target_voltage - 100;
}
/*
* Adjust trickle charge time (proportional and integral terms).
* Note: I considered setting the level higher if the USB is
* plugged in, but it doesn't appear to be necessary and will
* generate more heat [gvb].
*/
pid_p = ((signed)target_voltage - (signed)battery_millivolts) / 5;
if((pid_p <= PID_DEADZONE) && (pid_p >= -PID_DEADZONE))
pid_p = 0;
if((unsigned) battery_millivolts < target_voltage) {
if(pid_i < 60) {
pid_i++; /* limit so it doesn't "wind up" */
}
} else {
if(pid_i > 0) {
pid_i--; /* limit so it doesn't "wind up" */
}
}
trickle_sec = pid_p + pid_i;
if(trickle_sec > 60) {
trickle_sec = 60;
}
if(trickle_sec < 0) {
trickle_sec = 0;
}
} else if (charge_state == DISCHARGING) {
trickle_sec = 0;
/*
* The charger is enabled here only in one case: if it was
* turned on at boot time (power_init). Turn it off now.
*/
if (charger_enabled)
charger_enable(false);
}
if (charger_input_state == CHARGER_UNPLUGGED) {
/*
* The charger was just unplugged.
*/
DEBUGF("power: charger disconnected, disabling\n");
charger_enable(false);
powermgmt_last_cycle_level = battery_percent;
powermgmt_last_cycle_startstop_min = 0;
trickle_sec = 0;
pid_p = 0;
pid_i = 0;
charge_state = DISCHARGING;
snprintf(power_message, POWER_MESSAGE_LEN, "Charger: discharge");
}
/* sleep for a minute */
if(trickle_sec > 0) {
charger_enable(true);
power_thread_sleep(HZ * trickle_sec);
}
if(trickle_sec < 60)
charger_enable(false);
power_thread_sleep(HZ * (60 - trickle_sec));
#if defined(DEBUG_FILE)
if(usb_inserted()) {
if(fd >= 0) {
/* It is probably too late to close the file but we can try...*/
close(fd);
fd = -1;
}
} else {
if(fd < 0) {
fd = open(DEBUG_FILE_NAME, O_WRONLY | O_APPEND | O_CREAT);
if(fd >= 0) {
snprintf(debug_message, DEBUG_MESSAGE_LEN,
"cycle_min, bat_millivolts, bat_percent, chgr_state"
" ,charge_state, pid_p, pid_i, trickle_sec\n");
write(fd, debug_message, strlen(debug_message));
wrcount = 99; /* force a flush */
}
}
if(fd >= 0) {
snprintf(debug_message, DEBUG_MESSAGE_LEN,
"%d, %d, %d, %d, %d, %d, %d, %d\n",
powermgmt_last_cycle_startstop_min, battery_millivolts,
battery_percent, charger_input_state, charge_state,
pid_p, pid_i, trickle_sec);
write(fd, debug_message, strlen(debug_message));
wrcount++;
}
}
#endif /* defined(DEBUG_FILE) */
powermgmt_last_cycle_startstop_min++;
}
/*
* Prepare charging for poweroff
*/
static inline void charging_algorithm_close(void)
{
#if defined(DEBUG_FILE)
if(fd >= 0) {
close(fd);
fd = -1;
}
#endif
}
#else
#define BATT_AVE_SAMPLES 128 /* slw filter constant for all others */
static inline void charging_algorithm_small_step(void)
{
#if CONFIG_CHARGING == CHARGING_MONITOR
switch (charger_input_state)
{
case CHARGER_UNPLUGGED:
case NO_CHARGER:
charge_state = DISCHARGING;
break;
case CHARGER_PLUGGED:
case CHARGER:
if (charging_state()) {
charge_state = CHARGING;
} else {
charge_state = DISCHARGING;
}
break;
}
#endif /* CONFIG_CHARGING == CHARGING_MONITOR */
}
static inline void charging_algorithm_big_step(void)
{
/* sleep for a minute */
power_thread_sleep(HZ * 60);
}
/*
* Prepare charging for poweroff
*/
static inline void charging_algorithm_close(void)
{
/* Nothing to do */
}
#endif /* CONFIG_CHARGING == CHARGING_CONTROL */
/*
* This function is called to do the relativly long sleep waits from within the
* main power_thread loop while at the same time servicing any other periodic
* functions in the power thread which need to be called at a faster periodic
* rate than the slow periodic rate of the main power_thread loop.
*
* While we are waiting for the time to expire, we average the battery
* voltages.
*/
static void power_thread_sleep(int ticks)
{
int small_ticks;
while (ticks > 0) {
#if CONFIG_CHARGING
/*
* Detect charger plugged/unplugged transitions. On a plugged or
* unplugged event, we return immediately, run once through the main
* loop (including the subroutines), and end up back here where we
* transition to the appropriate steady state charger on/off state.
*/
if(charger_inserted()
#ifdef HAVE_USB_POWER /* USB powered or USB inserted both provide power */
|| usb_powered()
|| (usb_inserted() && usb_charging_enabled())
#endif
) {
switch(charger_input_state) {
case NO_CHARGER:
case CHARGER_UNPLUGGED:
charger_input_state = CHARGER_PLUGGED;
return;
case CHARGER_PLUGGED:
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
last_sent_battery_level = 0;
charger_input_state = CHARGER;
break;
case CHARGER:
break;
}
} else { /* charger not inserted */
switch(charger_input_state) {
case NO_CHARGER:
break;
case CHARGER_UNPLUGGED:
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
last_sent_battery_level = 100;
charger_input_state = NO_CHARGER;
break;
case CHARGER_PLUGGED:
case CHARGER:
charger_input_state = CHARGER_UNPLUGGED;
return;
}
}
#endif /* CONFIG_CHARGING */
small_ticks = MIN(HZ/2, ticks);
sleep(small_ticks);
ticks -= small_ticks;
/* If the power off timeout expires, the main thread has failed
to shut down the system, and we need to force a power off */
if(shutdown_timeout) {
shutdown_timeout -= small_ticks;
if(shutdown_timeout <= 0)
power_off();
}
#ifdef HAVE_RTC_ALARM
power_thread_rtc_process();
#endif
/*
* Do a digital exponential filter. We don't sample the battery if
* the disk is spinning unless we are in USB mode (the disk will most
* likely always be spinning in USB mode).
*/
if (!ata_disk_is_active() || usb_inserted()) {
avgbat += battery_adc_voltage() - (avgbat / BATT_AVE_SAMPLES);
/*
* battery_millivolts is the millivolt-scaled filtered battery value.
*/
battery_millivolts = avgbat / BATT_AVE_SAMPLES;
/* update battery status every time an update is available */
battery_status_update();
}
else if (battery_percent < 8) {
/* If battery is low, observe voltage during disk activity.
* Shut down if voltage drops below shutoff level and we are not
* using NiMH or Alkaline batteries.
*/
battery_millivolts = (battery_adc_voltage() +
battery_millivolts + 1) / 2;
/* update battery status every time an update is available */
battery_status_update();
#ifndef NO_LOW_BATTERY_SHUTDOWN
if (!shutdown_timeout &&
(battery_millivolts < battery_level_shutoff[battery_type]))
sys_poweroff();
else
#endif
avgbat += battery_millivolts - (avgbat / BATT_AVE_SAMPLES);
}
charging_algorithm_small_step();
}
}
static void power_thread(void)
{
/* Delay reading the first battery level */
#ifdef MROBE_100
while(battery_adc_voltage()>4200) /* gives false readings initially */
#endif
sleep(HZ/100);
/* initialize the voltages for the exponential filter */
avgbat = battery_adc_voltage() + 15;
#ifndef HAVE_MMC /* this adjustment is only needed for HD based */
/* The battery voltage is usually a little lower directly after
turning on, because the disk was used heavily. Raise it by 5% */
#ifdef HAVE_CHARGING
if(!charger_inserted()) /* only if charger not connected */
#endif
avgbat += (percent_to_volt_discharge[battery_type][6] -
percent_to_volt_discharge[battery_type][5]) / 2;
#endif /* not HAVE_MMC */
avgbat = avgbat * BATT_AVE_SAMPLES;
battery_millivolts = avgbat / BATT_AVE_SAMPLES;
#if CONFIG_CHARGING
if(charger_inserted()) {
battery_percent = voltage_to_percent(battery_millivolts,
percent_to_volt_charge);
} else
#endif
{ battery_percent = voltage_to_percent(battery_millivolts,
percent_to_volt_discharge[battery_type]);
battery_percent += (battery_percent < 100);
}
while (1)
{
/* rotate the power history */
memmove(power_history + 1, power_history,
sizeof(power_history) - sizeof(power_history[0]));
/* insert new value at the start, in millivolts 8-) */
power_history[0] = battery_millivolts;
charging_algorithm_big_step();
handle_auto_poweroff();
}
}
void powermgmt_init(void)
{
/* init history to 0 */
memset(power_history, 0x00, sizeof(power_history));
create_thread(power_thread, power_stack, sizeof(power_stack), 0,
power_thread_name IF_PRIO(, PRIORITY_SYSTEM)
IF_COP(, CPU));
}
#endif /* SIMULATOR */
void sys_poweroff(void)
{
logf("sys_poweroff()");
/* If the main thread fails to shut down the system, we will force a
power off after an 20 second timeout - 28 seconds if recording */
if (shutdown_timeout == 0)
{
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
pcf50606_reset_timeout(); /* Reset timer on first attempt only */
#endif
#ifdef HAVE_RECORDING
if (audio_status() & AUDIO_STATUS_RECORD)
shutdown_timeout += HZ*8;
#endif
shutdown_timeout += HZ*20;
}
queue_broadcast(SYS_POWEROFF, 0);
}
void cancel_shutdown(void)
{
logf("sys_cancel_shutdown()");
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
/* TODO: Move some things to target/ tree */
if (shutdown_timeout)
pcf50606_reset_timeout();
#endif
shutdown_timeout = 0;
}
/* Various hardware housekeeping tasks relating to shutting down the jukebox */
void shutdown_hw(void)
{
#ifndef SIMULATOR
charging_algorithm_close();
audio_stop();
if (battery_level_safe()) { /* do not save on critical battery */
#ifdef HAVE_LCD_BITMAP
glyph_cache_save();
#endif
if(ata_disk_is_active())
ata_spindown(1);
}
while(ata_disk_is_active())
sleep(HZ/10);
#if CONFIG_CODEC != SWCODEC
mp3_shutdown();
#else
audiohw_close();
#endif
/* If HD is still active we try to wait for spindown, otherwise the
shutdown_timeout in power_thread_sleep will force a power off */
while(ata_disk_is_active())
sleep(HZ/10);
#ifndef IAUDIO_X5
lcd_set_contrast(0);
#endif /* IAUDIO_X5 */
#ifdef HAVE_REMOTE_LCD
lcd_remote_set_contrast(0);
#endif
#ifdef HAVE_LCD_SHUTDOWN
lcd_shutdown();
#endif
/* Small delay to make sure all HW gets time to flush. Especially
eeprom chips are quite slow and might be still writing the last
byte. */
sleep(HZ/4);
power_off();
#endif /* #ifndef SIMULATOR */
}
/* Send system battery level update events on reaching certain significant
levels. This must be called after battery_percent has been updated. */
static void send_battery_level_event(void)
{
static const int levels[] = { 5, 15, 30, 50, 0 };
const int *level = levels;
while (*level)
{
if (battery_percent <= *level && last_sent_battery_level > *level)
{
last_sent_battery_level = *level;
queue_broadcast(SYS_BATTERY_UPDATE, last_sent_battery_level);
break;
}
level++;
}
}