blob: ddefbf7fdb8fbad7c64af5f711bd91cf10817a57 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "fat.h"
#include "hotswap.h"
#include "ata-sd-target.h"
#include "ata_idle_notify.h"
#include "system.h"
#include <string.h>
#include "thread.h"
#include "led.h"
#include "disk.h"
#include "cpu.h"
#include "panic.h"
#include "usb.h"
#define BLOCK_SIZE 512
#define SECTOR_SIZE 512
#define BLOCKS_PER_BANK 0x7a7800
#define STATUS_REG (*(volatile unsigned int *)(0x70008204))
#define REG_1 (*(volatile unsigned int *)(0x70008208))
#define UNKNOWN (*(volatile unsigned int *)(0x70008210))
#define BLOCK_SIZE_REG (*(volatile unsigned int *)(0x7000821c))
#define BLOCK_COUNT_REG (*(volatile unsigned int *)(0x70008220))
#define REG_5 (*(volatile unsigned int *)(0x70008224))
#define CMD_REG0 (*(volatile unsigned int *)(0x70008228))
#define CMD_REG1 (*(volatile unsigned int *)(0x7000822c))
#define CMD_REG2 (*(volatile unsigned int *)(0x70008230))
#define RESPONSE_REG (*(volatile unsigned int *)(0x70008234))
#define SD_STATE_REG (*(volatile unsigned int *)(0x70008238))
#define REG_11 (*(volatile unsigned int *)(0x70008240))
#define REG_12 (*(volatile unsigned int *)(0x70008244))
#define DATA_REG (*(volatile unsigned int *)(0x70008280))
/* STATUS_REG bits */
#define DATA_DONE (1 << 12)
#define CMD_DONE (1 << 13)
#define ERROR_BITS (0x3f)
#define READY_FOR_DATA (1 << 8)
#define FIFO_FULL (1 << 7)
#define FIFO_EMPTY (1 << 6)
#define CMD_OK 0x0 /* Command was successful */
#define CMD_ERROR_2 0x2 /* SD did not respond to command (either it doesn't
understand the command or is not inserted) */
/* SD States */
#define IDLE 0
#define READY 1
#define IDENT 2
#define STBY 3
#define TRAN 4
#define DATA 5
#define RCV 6
#define PRG 7
#define DIS 8
#define FIFO_LEN 16 /* FIFO is 16 words deep */
/* SD Commands */
#define GO_IDLE_STATE 0
#define ALL_SEND_CID 2
#define SEND_RELATIVE_ADDR 3
#define SET_DSR 4
#define SWITCH_FUNC 6
#define SELECT_CARD 7
#define DESELECT_CARD 7
#define SEND_IF_COND 8
#define SEND_CSD 9
#define SEND_CID 10
#define STOP_TRANSMISSION 12
#define SEND_STATUS 13
#define GO_INACTIVE_STATE 15
#define SET_BLOCKLEN 16
#define READ_SINGLE_BLOCK 17
#define READ_MULTIPLE_BLOCK 18
#define SEND_NUM_WR_BLOCKS 22
#define WRITE_BLOCK 24
#define WRITE_MULTIPLE_BLOCK 25
#define ERASE_WR_BLK_START 32
#define ERASE_WR_BLK_END 33
#define ERASE 38
#define APP_CMD 55
#define EC_OK 0
#define EC_FAILED 1
#define EC_NOCARD 2
#define EC_WAIT_STATE_FAILED 3
#define EC_CHECK_TIMEOUT_FAILED 4
#define EC_POWER_UP 5
#define EC_READ_TIMEOUT 6
#define EC_WRITE_TIMEOUT 7
#define EC_TRAN_SEL_BANK 8
#define EC_TRAN_READ_ENTRY 9
#define EC_TRAN_READ_EXIT 10
#define EC_TRAN_WRITE_ENTRY 11
#define EC_TRAN_WRITE_EXIT 12
#define EC_FIFO_SEL_BANK_EMPTY 13
#define EC_FIFO_SEL_BANK_DONE 14
#define EC_FIFO_ENA_BANK_EMPTY 15
#define EC_FIFO_READ_FULL 16
#define EC_FIFO_WR_EMPTY 17
#define EC_FIFO_WR_DONE 18
#define EC_COMMAND 19
#define NUM_EC 20
/* Application Specific commands */
#define SET_BUS_WIDTH 6
#define SD_APP_OP_COND 41
/** global, exported variables **/
#ifdef HAVE_HOTSWAP
#define NUM_VOLUMES 2
#else
#define NUM_VOLUMES 1
#endif
/* for compatibility */
int ata_spinup_time = 0;
long last_disk_activity = -1;
/** static, private data **/
static bool initialized = false;
static long next_yield = 0;
#define MIN_YIELD_PERIOD 1000
static tSDCardInfo card_info[2];
static tSDCardInfo *currcard = NULL; /* current active card */
struct sd_card_status
{
int retry;
int retry_max;
};
static struct sd_card_status sd_status[NUM_VOLUMES] =
{
{ 0, 1 },
#ifdef HAVE_HOTSWAP
{ 0, 10 }
#endif
};
/* Shoot for around 75% usage */
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)];
static const char sd_thread_name[] = "ata/sd";
static struct mutex sd_mtx SHAREDBSS_ATTR;
static struct event_queue sd_queue;
/* Posted when card plugged status has changed */
#define SD_HOTSWAP 1
/* Actions taken by sd_thread when card status has changed */
enum sd_thread_actions
{
SDA_NONE = 0x0,
SDA_UNMOUNTED = 0x1,
SDA_MOUNTED = 0x2
};
/* Private Functions */
static unsigned int check_time[NUM_EC];
static inline bool sd_check_timeout(long timeout, int id)
{
return !TIME_AFTER(USEC_TIMER, check_time[id] + timeout);
}
static bool sd_poll_status(unsigned int trigger, long timeout)
{
long t = USEC_TIMER;
while ((STATUS_REG & trigger) == 0)
{
long time = USEC_TIMER;
if (TIME_AFTER(time, next_yield))
{
long ty = USEC_TIMER;
yield();
timeout += USEC_TIMER - ty;
next_yield = ty + MIN_YIELD_PERIOD;
}
if (TIME_AFTER(time, t + timeout))
return false;
}
return true;
}
static int sd_command(unsigned int cmd, unsigned long arg1,
unsigned int *response, unsigned int type)
{
int i, words; /* Number of 16 bit words to read from RESPONSE_REG */
unsigned int data[9];
CMD_REG0 = cmd;
CMD_REG1 = (unsigned int)((arg1 & 0xffff0000) >> 16);
CMD_REG2 = (unsigned int)((arg1 & 0xffff));
UNKNOWN = type;
if (!sd_poll_status(CMD_DONE, 100000))
return -EC_COMMAND;
if ((STATUS_REG & ERROR_BITS) != CMD_OK)
/* Error sending command */
return -EC_COMMAND - (STATUS_REG & ERROR_BITS)*100;
if (cmd == GO_IDLE_STATE)
return 0; /* no response here */
words = (type == 2) ? 9 : 3;
for (i = 0; i < words; i++) /* RESPONSE_REG is read MSB first */
data[i] = RESPONSE_REG; /* Read most significant 16-bit word */
if (response == NULL)
{
/* response discarded */
}
else if (type == 2)
{
/* Response type 2 has the following structure:
* [135:135] Start Bit - '0'
* [134:134] Transmission bit - '0'
* [133:128] Reserved - '111111'
* [127:001] CID or CSD register including internal CRC7
* [000:000] End Bit - '1'
*/
response[3] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8);
response[2] = (data[2]<<24) + (data[3]<<8) + (data[4]>>8);
response[1] = (data[4]<<24) + (data[5]<<8) + (data[6]>>8);
response[0] = (data[6]<<24) + (data[7]<<8) + (data[8]>>8);
}
else
{
/* Response types 1, 1b, 3, 6, 7 have the following structure:
* Types 4 and 5 are not supported.
*
* [47] Start bit - '0'
* [46] Transmission bit - '0'
* [45:40] R1, R1b, R6, R7: Command index
* R3: Reserved - '111111'
* [39:8] R1, R1b: Card Status
* R3: OCR Register
* R6: [31:16] RCA
* [15: 0] Card Status Bits 23, 22, 19, 12:0
* [23] COM_CRC_ERROR
* [22] ILLEGAL_COMMAND
* [19] ERROR
* [12:9] CURRENT_STATE
* [8] READY_FOR_DATA
* [7:6]
* [5] APP_CMD
* [4]
* [3] AKE_SEQ_ERROR
* [2] Reserved
* [1:0] Reserved for test mode
* R7: [19:16] Voltage accepted
* [15:8] echo-back of check pattern
* [7:1] R1, R1b: CRC7
* R3: Reserved - '1111111'
* [0] End Bit - '1'
*/
response[0] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8);
}
return 0;
}
static int sd_wait_for_state(unsigned int state, int id)
{
unsigned int response = 0;
unsigned int timeout = 0x80000;
check_time[id] = USEC_TIMER;
while (1)
{
int ret = sd_command(SEND_STATUS, currcard->rca, &response, 1);
long us;
if (ret < 0)
return ret*100 - id;
if (((response >> 9) & 0xf) == state)
{
SD_STATE_REG = state;
return 0;
}
if (!sd_check_timeout(timeout, id))
return -EC_WAIT_STATE_FAILED*100 - id;
us = USEC_TIMER;
if (TIME_AFTER(us, next_yield))
{
yield();
timeout += USEC_TIMER - us;
next_yield = us + MIN_YIELD_PERIOD;
}
}
}
static inline void copy_read_sectors_fast(unsigned char **buf)
{
/* Copy one chunk of 16 words using best method for start alignment */
switch ( (intptr_t)*buf & 3 )
{
case 0:
asm volatile (
"ldmia %[data], { r2-r9 } \r\n"
"orr r2, r2, r3, lsl #16 \r\n"
"orr r4, r4, r5, lsl #16 \r\n"
"orr r6, r6, r7, lsl #16 \r\n"
"orr r8, r8, r9, lsl #16 \r\n"
"stmia %[buf]!, { r2, r4, r6, r8 } \r\n"
"ldmia %[data], { r2-r9 } \r\n"
"orr r2, r2, r3, lsl #16 \r\n"
"orr r4, r4, r5, lsl #16 \r\n"
"orr r6, r6, r7, lsl #16 \r\n"
"orr r8, r8, r9, lsl #16 \r\n"
"stmia %[buf]!, { r2, r4, r6, r8 } \r\n"
: [buf]"+&r"(*buf)
: [data]"r"(&DATA_REG)
: "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9"
);
break;
case 1:
asm volatile (
"ldmia %[data], { r2-r9 } \r\n"
"orr r3, r2, r3, lsl #16 \r\n"
"strb r3, [%[buf]], #1 \r\n"
"mov r3, r3, lsr #8 \r\n"
"strh r3, [%[buf]], #2 \r\n"
"mov r3, r3, lsr #16 \r\n"
"orr r3, r3, r4, lsl #8 \r\n"
"orr r3, r3, r5, lsl #24 \r\n"
"mov r5, r5, lsr #8 \r\n"
"orr r5, r5, r6, lsl #8 \r\n"
"orr r5, r5, r7, lsl #24 \r\n"
"mov r7, r7, lsr #8 \r\n"
"orr r7, r7, r8, lsl #8 \r\n"
"orr r7, r7, r9, lsl #24 \r\n"
"mov r2, r9, lsr #8 \r\n"
"stmia %[buf]!, { r3, r5, r7 } \r\n"
"ldmia %[data], { r3-r10 } \r\n"
"orr r2, r2, r3, lsl #8 \r\n"
"orr r2, r2, r4, lsl #24 \r\n"
"mov r4, r4, lsr #8 \r\n"
"orr r4, r4, r5, lsl #8 \r\n"
"orr r4, r4, r6, lsl #24 \r\n"
"mov r6, r6, lsr #8 \r\n"
"orr r6, r6, r7, lsl #8 \r\n"
"orr r6, r6, r8, lsl #24 \r\n"
"mov r8, r8, lsr #8 \r\n"
"orr r8, r8, r9, lsl #8 \r\n"
"orr r8, r8, r10, lsl #24 \r\n"
"mov r10, r10, lsr #8 \r\n"
"stmia %[buf]!, { r2, r4, r6, r8 } \r\n"
"strb r10, [%[buf]], #1 \r\n"
: [buf]"+&r"(*buf)
: [data]"r"(&DATA_REG)
: "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
);
break;
case 2:
asm volatile (
"ldmia %[data], { r2-r9 } \r\n"
"strh r2, [%[buf]], #2 \r\n"
"orr r3, r3, r4, lsl #16 \r\n"
"orr r5, r5, r6, lsl #16 \r\n"
"orr r7, r7, r8, lsl #16 \r\n"
"stmia %[buf]!, { r3, r5, r7 } \r\n"
"ldmia %[data], { r2-r8, r10 } \r\n"
"orr r2, r9, r2, lsl #16 \r\n"
"orr r3, r3, r4, lsl #16 \r\n"
"orr r5, r5, r6, lsl #16 \r\n"
"orr r7, r7, r8, lsl #16 \r\n"
"stmia %[buf]!, { r2, r3, r5, r7 } \r\n"
"strh r10, [%[buf]], #2 \r\n"
: [buf]"+&r"(*buf)
: [data]"r"(&DATA_REG)
: "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
);
break;
case 3:
asm volatile (
"ldmia %[data], { r2-r9 } \r\n"
"orr r3, r2, r3, lsl #16 \r\n"
"strb r3, [%[buf]], #1 \r\n"
"mov r3, r3, lsr #8 \r\n"
"orr r3, r3, r4, lsl #24 \r\n"
"mov r4, r4, lsr #8 \r\n"
"orr r5, r4, r5, lsl #8 \r\n"
"orr r5, r5, r6, lsl #24 \r\n"
"mov r6, r6, lsr #8 \r\n"
"orr r7, r6, r7, lsl #8 \r\n"
"orr r7, r7, r8, lsl #24 \r\n"
"mov r8, r8, lsr #8 \r\n"
"orr r2, r8, r9, lsl #8 \r\n"
"stmia %[buf]!, { r3, r5, r7 } \r\n"
"ldmia %[data], { r3-r10 } \r\n"
"orr r2, r2, r3, lsl #24 \r\n"
"mov r3, r3, lsr #8 \r\n"
"orr r4, r3, r4, lsl #8 \r\n"
"orr r4, r4, r5, lsl #24 \r\n"
"mov r5, r5, lsr #8 \r\n"
"orr r6, r5, r6, lsl #8 \r\n"
"orr r6, r6, r7, lsl #24 \r\n"
"mov r7, r7, lsr #8 \r\n"
"orr r8, r7, r8, lsl #8 \r\n"
"orr r8, r8, r9, lsl #24 \r\n"
"mov r9, r9, lsr #8 \r\n"
"orr r10, r9, r10, lsl #8 \r\n"
"stmia %[buf]!, { r2, r4, r6, r8 } \r\n"
"strh r10, [%[buf]], #2 \r\n"
"mov r10, r10, lsr #16 \r\n"
"strb r10, [%[buf]], #1 \r\n"
: [buf]"+&r"(*buf)
: [data]"r"(&DATA_REG)
: "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10"
);
break;
}
}
static inline void copy_read_sectors_slow(unsigned char** buf)
{
int cnt = FIFO_LEN;
int t;
/* Copy one chunk of 16 words */
asm volatile (
"1: \r\n"
"ldrh %[t], [%[data]] \r\n"
"strb %[t], [%[buf]], #1 \r\n"
"mov %[t], %[t], lsr #8 \r\n"
"strb %[t], [%[buf]], #1 \r\n"
"subs %[cnt], %[cnt], #1 \r\n"
"bgt 1b \r\n"
: [cnt]"+&r"(cnt), [buf]"+&r"(*buf),
[t]"=&r"(t)
: [data]"r"(&DATA_REG)
);
}
/* Writes have to be kept slow for now */
static inline void copy_write_sectors(const unsigned char** buf)
{
int cnt = FIFO_LEN;
unsigned t;
do
{
t = *(*buf)++;
t |= *(*buf)++ << 8;
DATA_REG = t;
} while (--cnt > 0); /* tail loop is faster */
}
static int sd_select_bank(unsigned char bank)
{
unsigned char card_data[512];
const unsigned char* write_buf;
int i, ret;
memset(card_data, 0, 512);
ret = sd_wait_for_state(TRAN, EC_TRAN_SEL_BANK);
if (ret < 0)
return ret;
BLOCK_SIZE_REG = 512;
BLOCK_COUNT_REG = 1;
ret = sd_command(35, 0, NULL, 0x1c0d); /* CMD35 is vendor specific */
if (ret < 0)
return ret;
SD_STATE_REG = PRG;
card_data[0] = bank;
/* Write the card data */
write_buf = card_data;
for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN)
{
/* Wait for the FIFO to empty */
if (sd_poll_status(FIFO_EMPTY, 10000))
{
copy_write_sectors(&write_buf); /* Copy one chunk of 16 words */
continue;
}
return -EC_FIFO_SEL_BANK_EMPTY;
}
if (!sd_poll_status(DATA_DONE, 10000))
return -EC_FIFO_SEL_BANK_DONE;
currcard->current_bank = bank;
return 0;
}
static void sd_card_mux(int card_no)
{
/* Set the current card mux */
#if defined(SANSA_E200) || defined(PHILIPS_SA9200)
if (card_no == 0)
{
GPO32_VAL |= 0x4;
GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a);
GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a);
GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f);
GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f);
GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f);
outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014);
}
else
{
GPO32_VAL &= ~0x4;
GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f);
GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f);
GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a);
GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a);
GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a);
outl(inl(0x70000014) & ~(0x3ffff), 0x70000014);
}
#else /* SANSA_C200 */
if (card_no == 0)
{
GPO32_VAL |= 0x4;
GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f);
GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f);
GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a);
GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a);
GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a);
outl(inl(0x70000014) & ~(0x3ffff), 0x70000014);
}
else
{
GPO32_VAL &= ~0x4;
GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a);
GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a);
GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f);
GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f);
GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f);
outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014);
}
#endif
}
static void sd_init_device(int card_no)
{
/* SD Protocol registers */
#ifdef HAVE_HOTSWAP
unsigned int response = 0;
#endif
unsigned int i;
unsigned int c_size;
unsigned long c_mult;
unsigned char carddata[512];
unsigned char *dataptr;
int ret;
/* Enable and initialise controller */
REG_1 = 6;
/* Initialise card data as blank */
memset(currcard, 0, sizeof(*currcard));
/* Switch card mux to card to initialize */
sd_card_mux(card_no);
/* Init NAND */
REG_11 |= (1 << 15);
REG_12 |= (1 << 15);
REG_12 &= ~(3 << 12);
REG_12 |= (1 << 13);
REG_11 &= ~(3 << 12);
REG_11 |= (1 << 13);
DEV_EN |= DEV_ATA; /* Enable controller */
DEV_RS |= DEV_ATA; /* Reset controller */
DEV_RS &=~DEV_ATA; /* Clear Reset */
SD_STATE_REG = TRAN;
REG_5 = 0xf;
ret = sd_command(GO_IDLE_STATE, 0, NULL, 256);
if (ret < 0)
goto card_init_error;
check_time[EC_POWER_UP] = USEC_TIMER;
#ifdef HAVE_HOTSWAP
/* Check for SDHC:
- non-SDHC cards simply ignore SEND_IF_COND (CMD8) and we get error -219,
which we can just ignore and assume we're dealing with standard SD.
- SDHC cards echo back the argument into the response. This is how we
tell if the card is SDHC.
*/
ret = sd_command(SEND_IF_COND,0x1aa, &response,7);
if ( (ret < 0) && (ret!=-219) )
goto card_init_error;
#endif
while ((currcard->ocr & (1 << 31)) == 0) /* until card is powered up */
{
ret = sd_command(APP_CMD, currcard->rca, NULL, 1);
if (ret < 0)
goto card_init_error;
#ifdef HAVE_HOTSWAP
if(response == 0x1aa)
{
/* SDHC */
ret = sd_command(SD_APP_OP_COND, (1<<30)|0x100000,
&currcard->ocr, 3);
}
else
#endif /* HAVE_HOTSWAP */
{
/* SD Standard */
ret = sd_command(SD_APP_OP_COND, 0x100000, &currcard->ocr, 3);
}
if (ret < 0)
goto card_init_error;
if (!sd_check_timeout(5000000, EC_POWER_UP))
{
ret = -EC_POWER_UP;
goto card_init_error;
}
}
ret = sd_command(ALL_SEND_CID, 0, currcard->cid, 2);
if (ret < 0)
goto card_init_error;
ret = sd_command(SEND_RELATIVE_ADDR, 0, &currcard->rca, 1);
if (ret < 0)
goto card_init_error;
ret = sd_command(SEND_CSD, currcard->rca, currcard->csd, 2);
if (ret < 0)
goto card_init_error;
/* These calculations come from the Sandisk SD card product manual */
if( (currcard->csd[3]>>30) == 0)
{
/* CSD version 1.0 */
c_size = ((currcard->csd[2] & 0x3ff) << 2) + (currcard->csd[1]>>30) + 1;
c_mult = 4 << ((currcard->csd[1] >> 15) & 7);
currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 15);
currcard->block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
currcard->numblocks = c_size * c_mult * (currcard->max_read_bl_len/512);
currcard->capacity = currcard->numblocks * currcard->block_size;
}
#ifdef HAVE_HOTSWAP
else if( (currcard->csd[3]>>30) == 1)
{
/* CSD version 2.0 */
c_size = ((currcard->csd[2] & 0x3f) << 16) + (currcard->csd[1]>>16) + 1;
currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 0xf);
currcard->block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
currcard->numblocks = c_size << 10;
currcard->capacity = currcard->numblocks * currcard->block_size;
}
#endif /* HAVE_HOTSWAP */
REG_1 = 0;
ret = sd_command(SELECT_CARD, currcard->rca, NULL, 129);
if (ret < 0)
goto card_init_error;
ret = sd_command(APP_CMD, currcard->rca, NULL, 1);
if (ret < 0)
goto card_init_error;
ret = sd_command(SET_BUS_WIDTH, currcard->rca | 2, NULL, 1); /* 4 bit */
if (ret < 0)
goto card_init_error;
ret = sd_command(SET_BLOCKLEN, currcard->block_size, NULL, 1);
if (ret < 0)
goto card_init_error;
BLOCK_SIZE_REG = currcard->block_size;
/* If this card is >4GB & not SDHC, then we need to enable bank switching */
if( (currcard->numblocks >= BLOCKS_PER_BANK) &&
((currcard->ocr & (1<<30)) == 0) )
{
SD_STATE_REG = TRAN;
BLOCK_COUNT_REG = 1;
ret = sd_command(SWITCH_FUNC, 0x80ffffef, NULL, 0x1c05);
if (ret < 0)
goto card_init_error;
/* Read 512 bytes from the card.
The first 512 bits contain the status information
TODO: Do something useful with this! */
dataptr = carddata;
for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN)
{
/* Wait for the FIFO to be full */
if (sd_poll_status(FIFO_FULL, 100000))
{
copy_read_sectors_slow(&dataptr);
continue;
}
ret = -EC_FIFO_ENA_BANK_EMPTY;
goto card_init_error;
}
}
currcard->initialized = 1;
return;
/* Card failed to initialize so disable it */
card_init_error:
currcard->initialized = ret;
}
/* lock must already be aquired */
static void sd_select_device(int card_no)
{
currcard = &card_info[card_no];
if (card_no == 0)
{
/* Main card always gets a chance */
sd_status[0].retry = 0;
}
if (currcard->initialized > 0)
{
/* This card is already initialized - switch to it */
sd_card_mux(card_no);
return;
}
if (currcard->initialized == 0)
{
/* Card needs (re)init */
sd_init_device(card_no);
}
}
/* API Functions */
static void ata_led(bool onoff)
{
led(onoff);
}
int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount,
void* inbuf)
{
#ifndef HAVE_HOTSWAP
const int drive = 0;
#endif
int ret;
unsigned char *buf, *buf_end;
int bank;
/* TODO: Add DMA support. */
mutex_lock(&sd_mtx);
ata_led(true);
ata_read_retry:
if (drive != 0 && !card_detect_target())
{
/* no external sd-card inserted */
ret = -EC_NOCARD;
goto ata_read_error;
}
sd_select_device(drive);
if (currcard->initialized < 0)
{
ret = currcard->initialized;
goto ata_read_error;
}
last_disk_activity = current_tick;
/* Only switch banks with non-SDHC cards */
if((currcard->ocr & (1<<30))==0)
{
bank = start / BLOCKS_PER_BANK;
if (currcard->current_bank != bank)
{
ret = sd_select_bank(bank);
if (ret < 0)
goto ata_read_error;
}
start -= bank * BLOCKS_PER_BANK;
}
ret = sd_wait_for_state(TRAN, EC_TRAN_READ_ENTRY);
if (ret < 0)
goto ata_read_error;
BLOCK_COUNT_REG = incount;
#ifdef HAVE_HOTSWAP
if(currcard->ocr & (1<<30) )
{
/* SDHC */
ret = sd_command(READ_MULTIPLE_BLOCK, start, NULL, 0x1c25);
}
else
#endif
{
ret = sd_command(READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, NULL, 0x1c25);
}
if (ret < 0)
goto ata_read_error;
/* TODO: Don't assume BLOCK_SIZE == SECTOR_SIZE */
buf_end = (unsigned char *)inbuf + incount * currcard->block_size;
for (buf = inbuf; buf < buf_end;)
{
/* Wait for the FIFO to be full */
if (sd_poll_status(FIFO_FULL, 0x80000))
{
copy_read_sectors_fast(&buf); /* Copy one chunk of 16 words */
/* TODO: Switch bank if necessary */
continue;
}
ret = -EC_FIFO_READ_FULL;
goto ata_read_error;
}
last_disk_activity = current_tick;
ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1);
if (ret < 0)
goto ata_read_error;
ret = sd_wait_for_state(TRAN, EC_TRAN_READ_EXIT);
if (ret < 0)
goto ata_read_error;
while (1)
{
ata_led(false);
mutex_unlock(&sd_mtx);
return ret;
ata_read_error:
if (sd_status[drive].retry < sd_status[drive].retry_max
&& ret != -EC_NOCARD)
{
sd_status[drive].retry++;
currcard->initialized = 0;
goto ata_read_retry;
}
}
}
int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
const void* outbuf)
{
/* Write support is not finished yet */
/* TODO: The standard suggests using ACMD23 prior to writing multiple blocks
to improve performance */
#ifndef HAVE_HOTSWAP
const int drive = 0;
#endif
int ret;
const unsigned char *buf, *buf_end;
int bank;
mutex_lock(&sd_mtx);
ata_led(true);
ata_write_retry:
if (drive != 0 && !card_detect_target())
{
/* no external sd-card inserted */
ret = -EC_NOCARD;
goto ata_write_error;
}
sd_select_device(drive);
if (currcard->initialized < 0)
{
ret = currcard->initialized;
goto ata_write_error;
}
/* Only switch banks with non-SDHC cards */
if((currcard->ocr & (1<<30))==0)
{
bank = start / BLOCKS_PER_BANK;
if (currcard->current_bank != bank)
{
ret = sd_select_bank(bank);
if (ret < 0)
goto ata_write_error;
}
start -= bank * BLOCKS_PER_BANK;
}
check_time[EC_WRITE_TIMEOUT] = USEC_TIMER;
ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_ENTRY);
if (ret < 0)
goto ata_write_error;
BLOCK_COUNT_REG = count;
#ifdef HAVE_HOTSWAP
if(currcard->ocr & (1<<30) )
{
/* SDHC */
ret = sd_command(WRITE_MULTIPLE_BLOCK, start, NULL, 0x1c2d);
}
else
#endif
{
ret = sd_command(WRITE_MULTIPLE_BLOCK, start*BLOCK_SIZE, NULL, 0x1c2d);
}
if (ret < 0)
goto ata_write_error;
buf_end = outbuf + count * currcard->block_size - 2*FIFO_LEN;
for (buf = outbuf; buf <= buf_end;)
{
if (buf == buf_end)
{
/* Set SD_STATE_REG to PRG for the last buffer fill */
SD_STATE_REG = PRG;
}
udelay(2); /* needed here (loop is too fast :-) */
/* Wait for the FIFO to empty */
if (sd_poll_status(FIFO_EMPTY, 0x80000))
{
copy_write_sectors(&buf); /* Copy one chunk of 16 words */
/* TODO: Switch bank if necessary */
continue;
}
ret = -EC_FIFO_WR_EMPTY;
goto ata_write_error;
}
last_disk_activity = current_tick;
if (!sd_poll_status(DATA_DONE, 0x80000))
{
ret = -EC_FIFO_WR_DONE;
goto ata_write_error;
}
ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1);
if (ret < 0)
goto ata_write_error;
ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_EXIT);
if (ret < 0)
goto ata_write_error;
while (1)
{
ata_led(false);
mutex_unlock(&sd_mtx);
return ret;
ata_write_error:
if (sd_status[drive].retry < sd_status[drive].retry_max
&& ret != -EC_NOCARD)
{
sd_status[drive].retry++;
currcard->initialized = 0;
goto ata_write_retry;
}
}
}
static void sd_thread(void) __attribute__((noreturn));
static void sd_thread(void)
{
struct queue_event ev;
bool idle_notified = false;
while (1)
{
queue_wait_w_tmo(&sd_queue, &ev, HZ);
switch ( ev.id )
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
fat_lock(); /* lock-out FAT activity first -
prevent deadlocking via disk_mount that
would cause a reverse-order attempt with
another thread */
mutex_lock(&sd_mtx); /* lock-out card activity - direct calls
into driver that bypass the fat cache */
/* We now have exclusive control of fat cache and ata */
disk_unmount(1); /* release "by force", ensure file
descriptors aren't leaked and any busy
ones are invalid if mounting */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[1].initialized = 0;
sd_status[1].retry = 0;
if (ev.id == SYS_HOTSWAP_INSERTED)
disk_mount(1);
queue_broadcast(SYS_FS_CHANGED, 0);
/* Access is now safe */
mutex_unlock(&sd_mtx);
fat_unlock();
break;
#endif
case SYS_TIMEOUT:
if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
{
idle_notified = false;
}
else
{
/* never let a timer wrap confuse us */
next_yield = USEC_TIMER;
if (!idle_notified)
{
call_ata_idle_notifys(false);
idle_notified = true;
}
}
break;
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&sd_queue);
break;
case SYS_USB_DISCONNECTED:
usb_acknowledge(SYS_USB_DISCONNECTED_ACK);
break;
}
}
}
void ata_spindown(int seconds)
{
(void)seconds;
}
bool ata_disk_is_active(void)
{
return 0;
}
void ata_sleep(void)
{
}
void ata_spin(void)
{
}
/* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */
int ata_hard_reset(void)
{
return 0;
}
int ata_soft_reset(void)
{
return 0;
}
void ata_enable(bool on)
{
if(on)
{
DEV_EN |= DEV_ATA; /* Enable controller */
}
else
{
DEV_EN &= ~DEV_ATA; /* Disable controller */
}
}
#ifdef HAVE_HOTSWAP
void card_enable_monitoring_target(bool on)
{
if (on)
{
#ifdef SANSA_E200
GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80);
#elif defined(SANSA_C200)
GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08);
#endif
}
else
{
#ifdef SANSA_E200
GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80);
#elif defined(SANSA_C200)
GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08);
#endif
}
}
#endif
int ata_init(void)
{
int ret = 0;
if (!initialized)
mutex_init(&sd_mtx);
mutex_lock(&sd_mtx);
ata_led(false);
if (!initialized)
{
initialized = true;
/* init controller */
outl(inl(0x70000088) & ~(0x4), 0x70000088);
outl(inl(0x7000008c) & ~(0x4), 0x7000008c);
GPO32_ENABLE |= 0x4;
GPIO_SET_BITWISE(GPIOG_ENABLE, (0x3 << 5));
GPIO_SET_BITWISE(GPIOG_OUTPUT_EN, (0x3 << 5));
GPIO_SET_BITWISE(GPIOG_OUTPUT_VAL, (0x3 << 5));
#ifdef HAVE_HOTSWAP
/* enable card detection port - mask interrupt first */
#ifdef SANSA_E200
GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80);
GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x80);
GPIO_SET_BITWISE(GPIOA_ENABLE, 0x80);
#elif defined SANSA_C200
GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08);
GPIO_CLEAR_BITWISE(GPIOL_OUTPUT_EN, 0x08);
GPIO_SET_BITWISE(GPIOL_ENABLE, 0x08);
#endif
#endif
sd_select_device(0);
if (currcard->initialized < 0)
ret = currcard->initialized;
queue_init(&sd_queue, true);
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE)
IF_COP(, CPU));
/* enable interupt for the mSD card */
sleep(HZ/10);
#ifdef HAVE_HOTSWAP
#ifdef SANSA_E200
CPU_INT_EN = HI_MASK;
CPU_HI_INT_EN = GPIO0_MASK;
GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80);
GPIOA_INT_CLR = 0x80;
#elif defined SANSA_C200
CPU_INT_EN = HI_MASK;
CPU_HI_INT_EN = GPIO2_MASK;
GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08);
GPIOL_INT_CLR = 0x08;
#endif
#endif
}
mutex_unlock(&sd_mtx);
return ret;
}
/* move the sd-card info to mmc struct */
tCardInfo *card_get_info_target(int card_no)
{
int i, temp;
static tCardInfo card;
static const char mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const int exponent[] = { /* use varies */
1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 };
card.initialized = card_info[card_no].initialized;
card.ocr = card_info[card_no].ocr;
for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[3-i];
for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[3-i];
card.numblocks = card_info[card_no].numblocks;
card.blocksize = card_info[card_no].block_size;
card.size = card_info[card_no].capacity < 0xffffffff ?
card_info[card_no].capacity : 0xffffffff;
card.block_exp = card_info[card_no].block_exp;
temp = card_extract_bits(card.csd, 29, 3);
card.speed = mantissa[card_extract_bits(card.csd, 25, 4)]
* exponent[temp > 2 ? 7 : temp + 4];
card.nsac = 100 * card_extract_bits(card.csd, 16, 8);
temp = card_extract_bits(card.csd, 13, 3);
card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)]
* exponent[temp] / 10;
card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */
card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */
temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */
*((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3;
return &card;
}
bool card_detect_target(void)
{
#ifdef HAVE_HOTSWAP
#ifdef SANSA_E200
return (GPIOA_INPUT_VAL & 0x80) == 0; /* low active */
#elif defined SANSA_C200
return (GPIOL_INPUT_VAL & 0x08) != 0; /* high active */
#endif
#else
return false;
#endif
}
#ifdef HAVE_HOTSWAP
static bool sd1_oneshot_callback(struct timeout *tmo)
{
(void)tmo;
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
if (card_detect_target())
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
else
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
return false;
}
/* called on insertion/removal interrupt */
void microsd_int(void)
{
static struct timeout sd1_oneshot;
#ifdef SANSA_E200
GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80);
GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80);
GPIOA_INT_CLR = 0x80;
GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80);
#elif defined SANSA_C200
GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08);
GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08);
GPIOL_INT_CLR = 0x08;
GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08);
#endif
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
}
#endif /* HAVE_HOTSWAP */