blob: d26409cd90666c45f05c2296567b27161bec7327 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Jens Arnold
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#define CLOCK_MASK 0x20000000
#define DATA_MASK 0x04000000
#define GPIO_OUT_ADDR 0x80000004
#define CS_MASK 0x00010000
#define RS_MASK 0x00001000
#define GPIO1_OUT_ADDR 0x800000b4
.extern cpu_frequency /* Global variable from system.c */
.section .icode,"ax",@progbits
/* Output 8 bits to the LCD. Instruction order is devised to maximize the
* delay between changing the data line and the CLK L->H transition, which
* makes the LCD controller sample DATA.
* Requires CLK = 1 on entry.
*
* Custom calling convention:
* %a0 - GPIO_OUT_ADDR
* %d3 - data byte
* %d6 - DATA_MASK
* %d7 - CLOCK_MASK
* Clobbers:
* %d0..%d3
*/
.write_byte:
move.w %sr, %d2
move.w #0x2700, %sr
move.l (%a0), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #8, %d3
1:
move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d3 /* previous state, and 0's where it doesn't */
swap %d3 /* Shift data to upper byte */
lsl.l #8, %d3
move.l %d0, %d1 /* precalculate opposite state of clock line */
eor.l %d7, %d1
lsl.l #1, %d3 /* Shift out MSB */
bcc.s 1f
eor.l %d6, %d0 /* 1: Flip data bit */
eor.l %d6, %d1
1:
move.l %d1, (%a0) /* Output new state and set CLK = 0*/
bra.w .wr_bit7
/* Output 16 bits to the LCD. Instruction order is devised to maximize the
* delay between changing the data line and the CLK L->H transition, which
* makes the LCD controller sample DATA.
* Requires CLK = 1 on entry.
*
* Custom calling convention:
* %a0 - GPIO_OUT_ADDR
* %d3 - data word
* %d6 - DATA_MASK
* %d7 - CLOCK_MASK
* Clobbers:
* %d0..%d3
*/
.write_word:
move.w %sr, %d2
move.w #0x2700, %sr
move.l (%a0), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #16, %d3
1:
move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d3 /* previous state, and 0's where it doesn't */
swap %d3 /* Shift data to upper word */
move.l %d0, %d1 /* precalculate opposite state of clock line */
eor.l %d7, %d1
lsl.l #1, %d3 /* Shift out MSB */
bcc.s 1f
eor.l %d6, %d0 /* 1: Flip data bit */
eor.l %d6, %d1
1:
move.l %d1, (%a0) /* Output new state and set CLK = 0*/
.macro bit_out
move.l %d0, (%a0) /* Set CLK = 1 */
lsl.l #1, %d3
bcc.s 1f
eor.l %d6, %d0
eor.l %d6, %d1
1:
move.l %d1, (%a0)
.endm
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
.wr_bit7:
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
bit_out
nop
nop
move.l %d0, (%a0) /* Set CLK = 1 */
move.w %d2, %sr
rts
/* Output 16 bits to the LCD as fast as possible. Use only at < 60MHz.
*
* Custom calling convention:
* %a0 - GPIO_OUT_ADDR
* %d3 - data word
* %d6 - DATA_MASK
* %d7 - CLOCK_MASK
* Clobbers:
* %d0..%d3
*/
.write_word_fast:
move.w %sr, %d2 /* Get current interrupt level */
move.w #0x2700, %sr /* Disable interrupts */
move.l (%a0), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #16, %d3
1:
move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d3 /* previous state, and 0's where it doesn't */
swap %d3 /* Shift data to upper byte */
move.l %d0, %d1 /* precalculate opposite state of clock line */
eor.l %d7, %d1
.macro bit_out_fast
lsl.l #1,%d3 /* Shift out MSB */
bcc.s 1f
eor.l %d6, %d0 /* 1: Flip data bit */
eor.l %d6, %d1 /* for both clock states */
1:
move.l %d1, (%a0) /* Output new state and set CLK = 0*/
move.l %d0, (%a0) /* set CLK = 1 */
.endm
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
move.w %d2, %sr /* Restore interrupt level */
rts
.global lcd_write_command
.type lcd_write_command, @function
lcd_write_command:
lea.l (-4*4, %sp), %sp
movem.l %d2-%d3/%d6-%d7, (%sp)
move.l (4*4+4, %sp), %d3 /* cmd */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
move.l #CLOCK_MASK, %d7
move.l #~(RS_MASK+CS_MASK), %d0
and.l %d0, (%a1)
bsr.w .write_byte
move.l #CS_MASK, %d0
or.l %d0, (%a1)
movem.l (%sp), %d2-%d3/%d6-%d7
lea.l (4*4, %sp), %sp
rts
.global lcd_write_command_e
.type lcd_write_command_e, @function
lcd_write_command_e:
lea.l (-4*4, %sp), %sp
movem.l %d2-%d3/%d6-%d7, (%sp)
movem.l (4*4+4, %sp), %d2-%d3 /* cmd, data */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
move.l #CLOCK_MASK, %d7
move.l #~(RS_MASK+CS_MASK), %d0
and.l %d0, (%a1)
lsl.l #8, %d2
or.l %d2, %d3
bsr.w .write_word
move.l #CS_MASK, %d0
or.l %d0, (%a1)
movem.l (%sp), %d2-%d3/%d6-%d7
lea.l (4*4, %sp), %sp
rts
.global lcd_write_data
.type lcd_write_data, @function
lcd_write_data:
lea.l (-7*4, %sp), %sp
movem.l %d2-%d4/%d6-%d7/%a2-%a3, (%sp)
move.l (7*4+4, %sp), %a2 /* p_words */
move.l (7*4+8, %sp), %d4 /* count */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
move.l #CLOCK_MASK, %d7
lea.l .write_word, %a3
move.l cpu_frequency, %d0
cmp.l #60000000, %d0
bhi.b 1f
lea.l .write_word_fast, %a3
1:
move.l #RS_MASK, %d0
or.l %d0, (%a1)
move.l #~CS_MASK, %d0
and.l %d0, (%a1)
.wd_loop:
clr.l %d3
move.w (%a2)+, %d3
jsr (%a3)
subq.l #1, %d4
bne.s .wd_loop
move.l #CS_MASK, %d0
or.l %d0, (%a1)
movem.l (%sp), %d2-%d4/%d6-%d7/%a2-%a3
lea.l (7*4, %sp), %sp
rts
/*** The following functions are only needed for main LCDs ***/
.global lcd_mono_data
.type lcd_mono_data, @function
lcd_mono_data:
lea.l (-7*4, %sp), %sp
movem.l %d2-%d4/%d6-%d7/%a2-%a3, (%sp)
move.l (7*4+4, %sp), %a2 /* p_bytes */
move.l (7*4+8, %sp), %d4 /* count */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
move.l #CLOCK_MASK, %d7
lea.l .write_word, %a3
move.l cpu_frequency, %d0
cmp.l #60000000, %d0
bhi.b 1f
lea.l .write_word_fast, %a3
1:
move.l #RS_MASK, %d0
or.l %d0, (%a1)
move.l #~CS_MASK, %d0
and.l %d0, (%a1)
.md_loop:
clr.l %d3
move.b (%a2)+, %d3
move.l %d3, %d2
lsl.l #8, %d2
or.l %d2, %d3
jsr (%a3)
subq.l #1, %d4
bne.s .md_loop
move.l #CS_MASK, %d0
or.l %d0, (%a1)
movem.l (%sp), %d2-%d4/%d6-%d7/%a2-%a3
lea.l (7*4, %sp), %sp
rts
.global lcd_grey_data
.type lcd_grey_data,@function
lcd_grey_data:
lea.l (-9*4, %sp), %sp
movem.l %d2-%d7/%a2-%a4, (%sp)
movem.l (9*4+4, %sp), %a2-%a4 /* values, phases, length */
add.l %a4, %a4
lea.l (%a3, %a4.l*4), %a4 /* end address */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
move.l #CLOCK_MASK, %d7
move.l #RS_MASK, %d0
or.l %d0, (%a1)
move.l #~CS_MASK, %d0
and.l %d0, (%a1)
clr.l %d5
move.l (%a3), %d4 /* fetch 4 pixel phases */
bclr.l #31, %d4 /* Z = !(p0 & 0x80); p0 &= ~0x80; */
seq.b %d5 /* %d5 = ........................00000000 */
lsl.l #1, %d5 /* %d5 = .......................00000000. */
bclr.l #23, %d4 /* Z = !(p1 & 0x80); p1 &= ~0x80; */
seq.b %d5 /* %d5 = .......................011111111 */
lsl.l #1, %d5 /* %d5 = ......................011111111. */
bclr.l #15, %d4 /* Z = !(p2 & 0x80); p2 &= ~0x80; */
seq.b %d5 /* %d5 = ......................0122222222 */
lsl.l #1, %d5 /* %d5 = .....................0122222222. */
bclr.l #7, %d4 /* Z = !(p3 & 0x80); p3 &= ~0x80; */
seq.b %d5 /* %d5 = .....................01233333333 */
lsl.l #1, %d5 /* %d5 = ....................01233333333. */
add.l (%a2)+, %d4 /* add 4 pixel values to the phases */
move.l %d4, (%a3)+ /* store new phases, advance pointer */
move.l (%a3), %d4 /* fetch 4 pixel phases */
bclr.l #31, %d4 /* Z = !(p0 & 0x80); p0 &= ~0x80; */
seq.b %d5 /* %d5 = ....................012344444444 */
lsl.l #1, %d5 /* %d5 = ...................012344444444. */
bclr.l #23, %d4 /* Z = !(p1 & 0x80); p1 &= ~0x80; */
seq.b %d5 /* %d5 = ...................0123455555555 */
lsl.l #1, %d5 /* %d5 = ..................0123455555555. */
bclr.l #15, %d4 /* Z = !(p2 & 0x80); p2 &= ~0x80; */
seq.b %d5 /* %d5 = ..................01234566666666 */
lsl.l #1, %d5 /* %d5 = .................01234566666666. */
bclr.l #7, %d4 /* Z = !(p3 & 0x80); p3 &= ~0x80; */
seq.b %d5 /* %d5 = .................012345677777777 */
lsr.l #7, %d5 /* %d5 = ........................01234567 */
add.l (%a2)+, %d4 /* add 4 pixel values to the phases */
move.l %d4, (%a3)+ /* store new phases, advance pointer */
move.l %d5, %d3
lsl.l #8, %d3
or.l %d5, %d3
cmp.l %a3, %a4
bls.w .gd_last
.gd_loop:
move.w %sr, %d2
move.w #0x2700, %sr
move.l (%a0), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #16, %d3
1:
move.l %d3, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d3 /* previous state, and 0's where it doesn't */
swap %d3 /* Shift data to upper word */
move.l %d0, %d1 /* precalculate opposite state of clock line */
eor.l %d7, %d1
lsl.l #1, %d3 /* Shift out MSB */
bcc.s 1f
eor.l %d6, %d0 /* 1: Flip data bit */
eor.l %d6, %d1
1:
move.l %d1, (%a0) /* Output new state and set CLK = 0*/
move.l (%a3), %d4 /* fetch 4 pixel phases */
bit_out
bclr.l #31, %d4 /* Z = !(p0 & 0x80); p0 &= ~0x80; */
seq.b %d5 /* %d5 = ........................00000000 */
lsl.l #1, %d5 /* %d5 = .......................00000000. */
trapf
trapf
bit_out
bclr.l #23, %d4 /* Z = !(p1 & 0x80); p1 &= ~0x80; */
seq.b %d5 /* %d5 = .......................011111111 */
lsl.l #1, %d5 /* %d5 = ......................011111111. */
trapf
trapf
bit_out
bclr.l #15, %d4 /* Z = !(p2 & 0x80); p2 &= ~0x80; */
seq.b %d5 /* %d5 = ......................0122222222 */
lsl.l #1, %d5 /* %d5 = .....................0122222222. */
trapf
trapf
bit_out
bclr.l #7, %d4 /* Z = !(p3 & 0x80); p3 &= ~0x80; */
seq.b %d5 /* %d5 = .....................01233333333 */
lsl.l #1, %d5 /* %d5 = ....................01233333333. */
trapf
trapf
bit_out
add.l (%a2)+, %d4 /* add 4 pixel values to the phases */
bit_out
move.l %d4, (%a3)+ /* store new phases, advance pointer */
bit_out
move.l (%a3), %d4 /* fetch 4 pixel phases */
bit_out
bclr.l #31, %d4 /* Z = !(p0 & 0x80); p0 &= ~0x80; */
seq.b %d5 /* %d5 = ....................012344444444 */
lsl.l #1, %d5 /* %d5 = ...................012344444444. */
trapf
trapf
bit_out
bclr.l #23, %d4 /* Z = !(p1 & 0x80); p1 &= ~0x80; */
seq.b %d5 /* %d5 = ...................0123455555555 */
lsl.l #1, %d5 /* %d5 = ..................0123455555555. */
trapf
trapf
bit_out
bclr.l #15, %d4 /* Z = !(p2 & 0x80); p2 &= ~0x80; */
seq.b %d5 /* %d5 = ..................01234566666666 */
lsl.l #1, %d5 /* %d5 = .................01234566666666. */
trapf
trapf
bit_out
bclr.l #7, %d4 /* Z = !(p3 & 0x80); p3 &= ~0x80; */
seq.b %d5 /* %d5 = .................012345677777777 */
lsr.l #7, %d5 /* %d5 = ........................01234567 */
trapf
trapf
bit_out
add.l (%a2)+, %d4 /* add 4 pixel values to the phases */
bit_out
move.l %d4, (%a3)+ /* store new phases, advance pointer */
bit_out
nop
nop
bit_out
move.l %d5, %d3
lsl.l #8, %d3
or.l %d5, %d3
nop
move.l %d0, (%a0) /* Set CLK = 1 */
move.w %d2, %sr
cmp.l %a3, %a4
bhi.w .gd_loop
.gd_last:
bsr.w .write_word
move.l #CS_MASK, %d0
or.l %d0, (%a1)
movem.l (%sp), %d2-%d7/%a2-%a4
lea.l (9*4, %sp), %sp
rts