| /* |
| * WMA compatible decoder |
| * Copyright (c) 2002 The FFmpeg Project. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include "wmafixed.h" |
| #include "mdct.h" |
| |
| fixed32 tcos0[1024], tsin0[1024]; //these are the sin and cos rotations used by the MDCT |
| uint16_t revtab0[1024]; |
| |
| /** |
| * init MDCT or IMDCT computation. |
| */ |
| int ff_mdct_init(MDCTContext *s, int nbits, int inverse) |
| { |
| int n; |
| // fixed32 alpha; |
| |
| memset(s, 0, sizeof(*s)); |
| n = 1 << nbits; //nbits ranges from 12 to 8 inclusive |
| |
| s->nbits = nbits; |
| s->n = n; |
| |
| (&s->fft)->nbits = nbits-2; |
| (&s->fft)->inverse = inverse; |
| |
| return 0; |
| |
| } |
| |
| /** |
| * Compute inverse MDCT of size N = 2^nbits |
| * @param output N samples |
| * @param input N/2 samples |
| * @param tmp N/2 samples |
| */ |
| void ff_imdct_calc(MDCTContext *s, |
| fixed32 *output, |
| fixed32 *input) |
| { |
| int k, n8, n4, n2, n, j,scale; |
| const fixed32 *in1, *in2; |
| FFTComplex *z1 = (FFTComplex *)output; |
| FFTComplex *z2 = (FFTComplex *)input; |
| int revtabshift = 12 - s->nbits; |
| |
| n = 1 << s->nbits; |
| |
| n2 = n >> 1; |
| n4 = n >> 2; |
| n8 = n >> 3; |
| |
| |
| /* pre rotation */ |
| in1 = input; |
| in2 = input + n2 - 1; |
| |
| for(k = 0; k < n4; k++) |
| { |
| int kshift = k<<revtabshift; |
| j=revtab0[kshift]; |
| CMUL(&z1[j].re, &z1[j].im, *in2, *in1, tcos0[kshift], tsin0[kshift]); |
| in1 += 2; |
| in2 -= 2; |
| } |
| |
| scale = fft_calc_unscaled(&s->fft, z1); |
| |
| /* post rotation + reordering */ |
| |
| for(k = 0; k < n4; k++) |
| { |
| int kshift = k<<revtabshift; |
| CMUL(&z2[k].re, &z2[k].im, (z1[k].re), (z1[k].im), tcos0[kshift], tsin0[kshift]); |
| } |
| |
| for(k = 0; k < n8; k++) |
| { |
| fixed32 r1,r2,r3,r4,r1n,r2n,r3n; |
| |
| r1 = z2[n8 + k].im; |
| r1n = r1 * -1; |
| r2 = z2[n8-1-k].re; |
| r2n = r2 * -1; |
| r3 = z2[k+n8].re; |
| r3n = r3 * -1; |
| r4 = z2[n8-k-1].im; |
| |
| output[2*k] = r1n; |
| output[n2-1-2*k] = r1; |
| |
| output[2*k+1] = r2; |
| output[n2-1-2*k-1] = r2n; |
| |
| output[n2 + 2*k]= r3n; |
| output[n-1- 2*k]= r3n; |
| |
| output[n2 + 2*k+1]= r4; |
| output[n-2 - 2 * k] = r4; |
| } |
| } |
| |
| int mdct_init_global(void) |
| { |
| int i,j,m; |
| /* init the MDCT bit reverse table here rather then in fft_init */ |
| |
| for(i=0;i<1024;i++) /*hard coded to a 2048 bit rotation*/ |
| { /*smaller sizes can reuse the largest*/ |
| m=0; |
| for(j=0;j<10;j++) |
| { |
| m |= ((i >> j) & 1) << (10-j-1); |
| } |
| |
| revtab0[i]=m; |
| } |
| |
| for(i=0;i<1024;i++) |
| { |
| //fixed32 pi2 = fixmul32(0x20000, M_PI_F); |
| fixed32 ip = itofix32(i) + 0x2000; |
| ip = ip >> 12; |
| //ip = fixdiv32(ip,itofix32(n)); // PJJ optimize |
| //alpha = fixmul32(TWO_M_PI_F, ip); |
| //s->tcos[i] = -fixcos32(alpha); //alpha between 0 and pi/2 |
| //s->tsin[i] = -fixsin32(alpha); |
| |
| //I can't remember why this works, but it seems to agree for ~24 bits, maybe more! |
| tsin0[i] = - fsincos(ip<<16, &(tcos0[i])); |
| tcos0[i] *=-1; |
| } |
| |
| fft_init_global(); |
| |
| return 0; |
| } |
| |