blob: e973a30d0487d862002b2ba52e39d930fb9b821c [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2003 by Jörg Hohensohn
*
* Second-level bootloader, with dual-boot feature by holding F1/Menu
* This is the image being descrambled and executed by the boot ROM.
* It's task is to copy Rockbox from Flash to DRAM.
* The image(s) in flash may optionally be compressed with UCL 2e
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "sh7034.h"
#include "bootloader.h"
#ifdef NO_ROM
/* start with the vector table */
UINT32 vectors[] __attribute__ ((section (".vectors"))) =
{
(UINT32)_main, /* entry point, the copy routine */
(UINT32)(end_stack - 1), /* initial stack pointer */
FLASH_BASE + 0x200, /* source of image in flash */
(UINT32)total_size, /* size of image */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0x03020080 /* mask and version (just as a suggestion) */
};
#else
/* our binary has to start with a vector to the entry point */
tpMain start_vector[] __attribute__ ((section (".startvector"))) = {main};
#endif
#ifdef NO_ROM /* some code which is only needed for the romless variant */
void _main(void)
{
UINT32* pSrc;
UINT32* pDest;
UINT32* pEnd;
/*
asm volatile ("ldc %0,sr" : : "r"(0xF0)); // disable interrupts
asm volatile ("mov.l @%0,r15" : : "r"(4)); // load stack
asm volatile ("ldc %0,vbr" : : "r"(0)); // load vector base
*/
/* copy everything to IRAM and continue there */
pSrc = begin_iramcopy;
pDest = begin_text;
pEnd = pDest + (begin_stack - begin_text);
do
{
*pDest++ = *pSrc++;
}
while (pDest < pEnd);
main(); /* jump to the real main() */
}
void BootInit(void)
{
/* inits from the boot ROM, whether they make sense or not */
PBDR &= 0xFFBF; /* LED off (0x131E) */
PBCR2 = 0; /* all GPIO */
PBIOR |= 0x0040; /* LED output */
PBIOR &= 0xFFF1; /* LCD lines input */
/* init DRAM like the boot ROM does */
PACR2 &= 0xFFFB;
PACR2 |= 0x0008;
CASCR = 0xAF;
BCR |= 0x8000;
WCR1 &= 0xFDFD;
DCR = 0x0E00;
RCR = 0x5AB0;
RTCOR = 0x9605;
RTCSR = 0xA518;
}
#endif /* #ifdef NO_ROM */
int main(void)
{
int nButton;
PlatformInit(); /* model-specific inits */
nButton = ButtonPressed();
if (nButton == 3)
{ /* F3 means start monitor */
MiniMon();
}
else
{
tImage* pImage;
pImage = GetStartImage(nButton); /* which image */
DecompressStart(pImage); /* move into place and start it */
}
return 0; /* I guess we won't return ;-) */
}
/* init code that is specific to certain platform */
void PlatformInit(void)
{
#ifdef NO_ROM
BootInit(); /* if not started by boot ROM, we need to init what it did */
#endif
#if defined PLATFORM_PLAYER
BRR1 = 0x19; /* 14400 Baud for monitor */
PBDRL |= 0x10; /* set PB4 to 1 to power the hd early (and prepare for
* probing in case the charger is connected) */
PBIORL |= 0x10; /* make PB4 an output */
PACR2 &= 0xFFFC; /* GPIO for PA0 (charger detection, input by default) */
if (!(PADRL & 0x01)) /* charger plugged? */
{ /* we need to probe whether the box is able to control hd power */
int i;
PBIORL &= ~0x10; /* set PB4 to input */
/* wait whether it goes low, max. ~1 ms */
for (i = 0; (PBDRL & 0x10) && i < 1000; i++);
if (~(PBDRL & 0x10)) /* pulled low -> power controllable */
PBDRL &= 0x10; /* set PB4 low */
else /* still floating high -> not controllable */
PBDRL |= 0x10; /* set PB4 high */
PBIORL |= 0x10; /* ..and output again */
}
#elif defined PLATFORM_RECORDER
BRR1 = 0x02; /* 115200 Baud for monitor */
if (ReadADC(7) > 0x100) /* charger plugged? */
{ /* switch off the HD, else a flat battery may not start */
PACR2 &= 0xFBFF; /* GPIO for PA5 */
PAIOR |= 0x0020; /* make PA5 an output (low by default) */
}
#elif defined PLATFORM_FM
BRR1 = 0x02; /* 115200 Baud for monitor */
PBDR |= 0x0020; /* set PB5 to keep power (fixes the ON-holding problem) */
PBIOR |= 0x0020; /* make PB5 an output */
if (ReadADC(0) < 0x1FF) /* charger plugged? */
{ /* switch off the HD, else a flat battery may not start */
PACR2 &= 0xFBFF; /* GPIO for PA5 */
PAIOR |= 0x0020; /* make PA5 an output (low by default) */
}
#elif defined PLATFORM_ONDIO
BRR1 = 0x19; /* 14400 Baud for monitor */
PBDR |= 0x0020; /* set PB5 to keep power (fixes the ON-holding problem) */
PBIOR |= 0x0020; /* make PB5 an output */
#endif
/* platform-independent inits */
DCR |= 0x1000; /* enable burst mode on DRAM */
BCR |= 0x2000; /* activate Warp mode (simultaneous internal and external
* mem access) */
}
/* Thinned out version of the UCL 2e decompression sourcecode
* Original (C) Markus F.X.J Oberhumer under GNU GPL license */
#define GETBIT(bb, src, ilen) \
(((bb = bb & 0x7f ? bb*2 : ((unsigned)src[ilen++]*2+1)) >> 8) & 1)
int ucl_nrv2e_decompress_8(
const UINT8 *src, UINT8 *dst, UINT32* dst_len)
{
UINT32 bb = 0;
unsigned ilen = 0, olen = 0, last_m_off = 1;
for (;;)
{
unsigned m_off, m_len;
while (GETBIT(bb,src,ilen))
{
dst[olen++] = src[ilen++];
}
m_off = 1;
for (;;)
{
m_off = m_off*2 + GETBIT(bb,src,ilen);
if (GETBIT(bb,src,ilen)) break;
m_off = (m_off-1)*2 + GETBIT(bb,src,ilen);
}
if (m_off == 2)
{
m_off = last_m_off;
m_len = GETBIT(bb,src,ilen);
}
else
{
m_off = (m_off-3)*256 + src[ilen++];
if (m_off == 0xffffffff)
break;
m_len = (m_off ^ 0xffffffff) & 1;
m_off >>= 1;
last_m_off = ++m_off;
}
if (m_len)
m_len = 1 + GETBIT(bb,src,ilen);
else if (GETBIT(bb,src,ilen))
m_len = 3 + GETBIT(bb,src,ilen);
else
{
m_len++;
do {
m_len = m_len*2 + GETBIT(bb,src,ilen);
} while (!GETBIT(bb,src,ilen));
m_len += 3;
}
m_len += (m_off > 0x500);
{
const UINT8 *m_pos;
m_pos = dst + olen - m_off;
dst[olen++] = *m_pos++;
do dst[olen++] = *m_pos++; while (--m_len > 0);
}
}
*dst_len = olen;
return ilen;
}
/* move the image into place and start it */
void DecompressStart(tImage* pImage)
{
UINT32* pSrc;
UINT32* pDest;
pSrc = pImage->image;
pDest = pImage->pDestination;
if (pSrc != pDest) /* if not linked to that flash address */
{
if (pImage->flags & IF_UCL_2E)
{ /* UCL compressed, algorithm 2e */
UINT32 dst_len; /* dummy */
ucl_nrv2e_decompress_8((UINT8*)pSrc, (UINT8*)pDest, &dst_len);
}
else
{ /* uncompressed, copy it */
UINT32 size = pImage->size;
UINT32* pEnd;
size = (size + 3) / 4; /* round up to 32bit-words */
pEnd = pDest + size;
do
{
*pDest++ = *pSrc++;
}
while (pDest < pEnd);
}
}
pImage->pExecute();
}
#ifdef USE_ADC
int ReadADC(int channel)
{
/* after channel 3, the ports wrap and get re-used */
volatile UINT16* pResult = (UINT16*)(ADDRAH_ADDR + 2 * (channel & 0x03));
int timeout = 266; /* conversion takes 266 clock cycles */
ADCSR = 0x20 | channel; /* start single conversion */
while (((ADCSR & 0x80) == 0) && (--timeout)); /* 6 instructions per round*/
return (timeout == 0) ? -1 : *pResult>>6;
}
#endif
/* This function is platform-dependent,
* until I figure out how to distinguish at runtime. */
int ButtonPressed(void) /* return 1,2,3 for F1,F2,F3, 0 if none pressed */
{
#ifdef USE_ADC
int value = ReadADC(CHANNEL);
if (value >= F1_LOWER && value <= F1_UPPER) /* in range */
return 1;
else if (value >= F2_LOWER && value <= F2_UPPER) /* in range */
return 2;
else if (value >= F3_LOWER && value <= F3_UPPER) /* in range */
return 3;
#else
int value = PCDR;
if (!(value & F1_MASK))
return 1;
else if (!(value & F2_MASK))
return 2;
else if (!(value & F3_MASK))
return 3;
#endif
return 0;
}
/* Determine the image to be started */
tImage* GetStartImage(int nPreferred)
{
tImage* pImage1;
tImage* pImage2 = NULL; /* default to not present */
UINT32 pos;
UINT32* pFlash = (UINT32*)FLASH_BASE;
/* determine the first image position */
pos = pFlash[2] + pFlash[3]; /* position + size of the bootloader
* = after it */
pos = (pos + 3) & ~3; /* be sure it's 32 bit aligned */
pImage1 = (tImage*)pos;
if (pImage1->size != 0)
{ /* check for second image */
pos = (UINT32)(&pImage1->image) + pImage1->size;
pImage2 = (tImage*)pos;
/* does it make sense? (not in FF or 00 erazed space) */
if (pImage2->pDestination == (void*)0xFFFFFFFF
|| pImage2->size == 0xFFFFFFFF
|| pImage2->pExecute == (void*)0xFFFFFFFF
|| pImage2->flags == 0xFFFFFFFF
|| pImage2->pDestination == NULL)
/* size, execute and flags can legally be 0 */
{
pImage2 = NULL; /* invalidate */
}
}
if (pImage2 == NULL || nPreferred == 1)
{ /* no second image or overridden: return the first */
return pImage1;
}
return pImage2; /* return second image */
}
/* diagnostic functions */
void SetLed(BOOL bOn)
{
if (bOn)
PBDR |= 0x0040;
else
PBDR &= ~0x0040;
}
void UartInit(void)
{
PBIOR &= 0xFBFF; /* input: RXD1 remote pin */
PBCR1 |= 0x00A0; /* set PB11+PB10 to UART */
PBCR1 &= 0xFFAF; /* clear bits 6, 4 -> UART */
SMR1 = 0x00; /* async format 8N1, baud generator input is CPU clock */
SCR1 = 0x30; /* transmit+receive enable */
PBCR1 &= 0x00FF; /* set bit 12...15 as GPIO */
SSR1 &= 0xBF; /* clear bit 6 (RDRF, receive data register full) */
}
UINT8 UartRead(void)
{
UINT8 byte;
while (!(SSR1 & SCI_RDRF)); /* wait for char to be available */
byte = RDR1;
SSR1 &= ~SCI_RDRF;
return byte;
}
void UartWrite(UINT8 byte)
{
while (!(SSR1 & SCI_TDRE)); /* wait for transmit buffer empty */
TDR1 = byte;
SSR1 &= ~SCI_TDRE;
}
/* include the mini monitor as a rescue feature, started with F3 */
void MiniMon(void)
{
UINT8 cmd;
UINT32 addr;
UINT32 size;
UINT32 content;
volatile UINT8* paddr = NULL;
volatile UINT8* pflash = NULL; /* flash base address */
UartInit();
while (1)
{
cmd = UartRead();
switch (cmd)
{
case BAUDRATE:
content = UartRead();
UartWrite(cmd); /* acknowledge by returning the command value */
while (!(SSR1 & SCI_TEND)); /* wait for empty shift register,
* before changing baudrate */
BRR1 = content;
break;
case ADDRESS:
addr = (UartRead() << 24) | (UartRead() << 16)
| (UartRead() << 8) | UartRead();
paddr = (UINT8*)addr;
pflash = (UINT8*)(addr & 0xFFF80000); /* round down to 512k align*/
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case BYTE_READ:
content = *paddr++;
UartWrite(content); /* the content is the ack */
break;
case BYTE_WRITE:
content = UartRead();
*paddr++ = content;
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case BYTE_READ16:
size = 16;
while (size--)
{
content = *paddr++;
UartWrite(content); /* the content is the ack */
}
break;
case BYTE_WRITE16:
size = 16;
while (size--)
{
content = UartRead();
*paddr++ = content;
}
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case BYTE_FLASH:
content = UartRead();
pflash[0x5555] = 0xAA; /* set flash to command mode */
pflash[0x2AAA] = 0x55;
pflash[0x5555] = 0xA0; /* byte program command */
*paddr++ = content;
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case BYTE_FLASH16:
size = 16;
while (size--)
{
content = UartRead();
pflash[0x5555] = 0xAA; /* set flash to command mode */
pflash[0x2AAA] = 0x55;
pflash[0x5555] = 0xA0; /* byte program command */
*paddr++ = content;
}
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case HALFWORD_READ:
content = *(UINT16*)paddr;
paddr += 2;
UartWrite(content >> 8); /* highbyte */
UartWrite(content & 0xFF); /* lowbyte */
break;
case HALFWORD_WRITE:
content = UartRead() << 8 | UartRead();
*(UINT16*)paddr = content;
paddr += 2;
UartWrite(cmd); /* acknowledge by returning the command value */
break;
case EXECUTE:
{
tpFunc pFunc = (tpFunc)paddr;
pFunc();
UartWrite(cmd); /* acknowledge by returning the command value*/
}
break;
case VERSION:
UartWrite(1); /* return our version number */
break;
default:
{
SetLed(TRUE);
UartWrite(~cmd); /* error acknowledge */
}
} /* case */
} /* while (1) */
}