| /*************************************************************************** |
| * __________ __ ___. |
| * Open \______ \ ____ ____ | | _\_ |__ _______ ___ |
| * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / |
| * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < |
| * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ |
| * \/ \/ \/ \/ \/ |
| * $Id$ |
| * |
| * Copyright (C) 2005 Magnus Holmgren |
| * |
| * All files in this archive are subject to the GNU General Public License. |
| * See the file COPYING in the source tree root for full license agreement. |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| * KIND, either express or implied. |
| * |
| ****************************************************************************/ |
| |
| #include <ctype.h> |
| #include <inttypes.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stdbool.h> |
| #include "debug.h" |
| |
| /* The fixed point math routines (with the exception of fp_atof) are based |
| * on oMathFP by Dan Carter (http://orbisstudios.com). |
| */ |
| |
| /* 12 bits of precision gives fairly accurate result, but still allows a |
| * compact implementation. The math code supports up to 13... |
| */ |
| |
| #define FP_BITS (12) |
| #define FP_MASK ((1 << FP_BITS) - 1) |
| #define FP_ONE (1 << FP_BITS) |
| #define FP_TWO (2 << FP_BITS) |
| #define FP_HALF (1 << (FP_BITS - 1)) |
| #define FP_LN2 ( 45426 >> (16 - FP_BITS)) |
| #define FP_LN2_INV ( 94548 >> (16 - FP_BITS)) |
| #define FP_EXP_ZERO ( 10922 >> (16 - FP_BITS)) |
| #define FP_EXP_ONE ( -182 >> (16 - FP_BITS)) |
| #define FP_EXP_TWO ( 4 >> (16 - FP_BITS)) |
| #define FP_INF (0x7fffffff) |
| #define FP_LN10 (150902 >> (16 - FP_BITS)) |
| |
| #define FP_MAX_DIGITS (4) |
| #define FP_MAX_DIGITS_INT (10000) |
| |
| #define FP_FAST_MUL_DIV |
| |
| #ifdef FP_FAST_MUL_DIV |
| |
| /* These macros can easily overflow, but they are good enough for our uses, |
| * and saves some code. |
| */ |
| #define fp_mul(x, y) (((x) * (y)) >> FP_BITS) |
| #define fp_div(x, y) (((x) << FP_BITS) / (y)) |
| |
| #else |
| |
| static long fp_mul(long x, long y) |
| { |
| long x_neg = 0; |
| long y_neg = 0; |
| long rc; |
| |
| if ((x == 0) || (y == 0)) |
| { |
| return 0; |
| } |
| |
| if (x < 0) |
| { |
| x_neg = 1; |
| x = -x; |
| } |
| |
| if (y < 0) |
| { |
| y_neg = 1; |
| y = -y; |
| } |
| |
| rc = (((x >> FP_BITS) * (y >> FP_BITS)) << FP_BITS) |
| + (((x & FP_MASK) * (y & FP_MASK)) >> FP_BITS) |
| + ((x & FP_MASK) * (y >> FP_BITS)) |
| + ((x >> FP_BITS) * (y & FP_MASK)); |
| |
| if ((x_neg ^ y_neg) == 1) |
| { |
| rc = -rc; |
| } |
| |
| return rc; |
| } |
| |
| static long fp_div(long x, long y) |
| { |
| long x_neg = 0; |
| long y_neg = 0; |
| long shifty; |
| long rc; |
| int msb = 0; |
| int lsb = 0; |
| |
| if (x == 0) |
| { |
| return 0; |
| } |
| |
| if (y == 0) |
| { |
| return (x < 0) ? -FP_INF : FP_INF; |
| } |
| |
| if (x < 0) |
| { |
| x_neg = 1; |
| x = -x; |
| } |
| |
| if (y < 0) |
| { |
| y_neg = 1; |
| y = -y; |
| } |
| |
| while ((x & (1 << (30 - msb))) == 0) |
| { |
| msb++; |
| } |
| |
| while ((y & (1 << lsb)) == 0) |
| { |
| lsb++; |
| } |
| |
| shifty = FP_BITS - (msb + lsb); |
| rc = ((x << msb) / (y >> lsb)); |
| |
| if (shifty > 0) |
| { |
| rc <<= shifty; |
| } |
| else |
| { |
| rc >>= -shifty; |
| } |
| |
| if ((x_neg ^ y_neg) == 1) |
| { |
| rc = -rc; |
| } |
| |
| return rc; |
| } |
| |
| #endif /* FP_FAST_MUL_DIV */ |
| |
| static long fp_exp(long x) |
| { |
| long k; |
| long z; |
| long R; |
| long xp; |
| |
| if (x == 0) |
| { |
| return FP_ONE; |
| } |
| |
| k = (fp_mul(abs(x), FP_LN2_INV) + FP_HALF) & ~FP_MASK; |
| |
| if (x < 0) |
| { |
| k = -k; |
| } |
| |
| x -= fp_mul(k, FP_LN2); |
| z = fp_mul(x, x); |
| R = FP_TWO + fp_mul(z, FP_EXP_ZERO + fp_mul(z, FP_EXP_ONE |
| + fp_mul(z, FP_EXP_TWO))); |
| xp = FP_ONE + fp_div(fp_mul(FP_TWO, x), R - x); |
| |
| if (k < 0) |
| { |
| k = FP_ONE >> (-k >> FP_BITS); |
| } |
| else |
| { |
| k = FP_ONE << (k >> FP_BITS); |
| } |
| |
| return fp_mul(k, xp); |
| } |
| |
| static long fp_exp10(long x) |
| { |
| if (x == 0) |
| { |
| return FP_ONE; |
| } |
| |
| return fp_exp(fp_mul(FP_LN10, x)); |
| } |
| |
| static long fp_atof(const char* s, int precision) |
| { |
| long int_part = 0; |
| long int_one = 1 << precision; |
| long frac_part = 0; |
| long frac_count = 0; |
| long frac_max = ((precision * 4) + 12) / 13; |
| long frac_max_int = 1; |
| long sign = 1; |
| bool point = false; |
| |
| while ((*s != '\0') && isspace(*s)) |
| { |
| s++; |
| } |
| |
| if (*s == '-') |
| { |
| sign = -1; |
| s++; |
| } |
| else if (*s == '+') |
| { |
| s++; |
| } |
| |
| while (*s != '\0') |
| { |
| if (*s == '.') |
| { |
| if (point) |
| { |
| break; |
| } |
| |
| point = true; |
| } |
| else if (isdigit(*s)) |
| { |
| if (point) |
| { |
| if (frac_count < frac_max) |
| { |
| frac_part = frac_part * 10 + (*s - '0'); |
| frac_count++; |
| frac_max_int *= 10; |
| } |
| } |
| else |
| { |
| int_part = int_part * 10 + (*s - '0'); |
| } |
| } |
| else |
| { |
| break; |
| } |
| |
| s++; |
| } |
| |
| while (frac_count < frac_max) |
| { |
| frac_part *= 10; |
| frac_count++; |
| frac_max_int *= 10; |
| } |
| |
| return sign * ((int_part * int_one) |
| + (((int64_t) frac_part * int_one) / frac_max_int)); |
| } |
| |
| static long convert_gain(long gain) |
| { |
| if (gain != 0) |
| { |
| /* Don't allow unreasonably low or high gain changes. |
| * Our math code can't handle it properly anyway. :) |
| */ |
| if (gain < (-23 * FP_ONE)) |
| { |
| gain = -23 * FP_ONE; |
| } |
| |
| if (gain > (17 * FP_ONE)) |
| { |
| gain = 17 * FP_ONE; |
| } |
| |
| gain = fp_exp10(gain / 20) << (24 - FP_BITS); |
| } |
| |
| return gain; |
| } |
| |
| long get_replaygain(const char* str) |
| { |
| long gain = 0; |
| |
| if (str) |
| { |
| gain = fp_atof(str, FP_BITS); |
| gain = convert_gain(gain); |
| } |
| |
| return gain; |
| } |
| |
| long get_replaypeak(const char* str) |
| { |
| long peak = 0; |
| |
| if (str) |
| { |
| peak = fp_atof(str, 24); |
| } |
| |
| return peak; |
| } |