blob: c064bf0e04326b7b47d47323b842d3a4ff536cf9 [file] [log] [blame]
/*
* WMA compatible decoder
* Copyright (c) 2002 The FFmpeg Project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file wmadec.c
* WMA compatible decoder.
*/
#include <codecs.h>
#include <codecs/lib/codeclib.h>
#include "asf.h"
#include "wmadec.h"
/* These are for development and debugging and should not be changed unless
you REALLY know what you are doing ;) */
//#define IGNORE_OVERFLOW
#define FAST_FILTERS
#define PRECISION 16
#define PRECISION64 16
static fixed64 IntTo64(int x)
{
fixed64 res = 0;
unsigned char *p = (unsigned char *)&res;
#ifdef ROCKBOX_BIG_ENDIAN
p[5] = x & 0xff;
p[4] = (x & 0xff00)>>8;
p[3] = (x & 0xff0000)>>16;
p[2] = (x & 0xff000000)>>24;
#else
p[2] = x & 0xff;
p[3] = (x & 0xff00)>>8;
p[4] = (x & 0xff0000)>>16;
p[5] = (x & 0xff000000)>>24;
#endif
return res;
}
static int IntFrom64(fixed64 x)
{
int res = 0;
unsigned char *p = (unsigned char *)&x;
#ifdef ROCKBOX_BIG_ENDIAN
res = p[5] | (p[4]<<8) | (p[3]<<16) | (p[2]<<24);
#else
res = p[2] | (p[3]<<8) | (p[4]<<16) | (p[5]<<24);
#endif
return res;
}
static fixed32 Fixed32From64(fixed64 x)
{
return x & 0xFFFFFFFF;
}
static fixed64 Fixed32To64(fixed32 x)
{
return (fixed64)x;
}
#define fixtof64(x) (float)((float)(x) / (float)(1 << PRECISION64)) //does not work on int64_t!
#define ftofix32(x) ((fixed32)((x) * (float)(1 << PRECISION) + ((x) < 0 ? -0.5 : 0.5)))
#define itofix64(x) (IntTo64(x))
#define itofix32(x) ((x) << PRECISION)
#define fixtoi32(x) ((x) >> PRECISION)
#define fixtoi64(x) (IntFrom64(x))
#ifdef CPU_ARM
#define fixmul32(x, y) \
({ int32_t __hi; \
uint32_t __lo; \
int32_t __result; \
asm ("smull %0, %1, %3, %4\n\t" \
"movs %0, %0, lsr %5\n\t" \
"adc %2, %0, %1, lsl %6" \
: "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
: "%r" (x), "r" (y), \
"M" (PRECISION), "M" (32 - PRECISION) \
: "cc"); \
__result; \
})
#elif defined(CPU_COLDFIRE)
static inline int32_t fixmul32(int32_t x, int32_t y)
{
#if PRECISION != 16
#warning Coldfire fixmul32() only works for PRECISION == 16
#endif
int32_t t1;
asm (
"mac.l %[x], %[y], %%acc0 \n" /* multiply */
"mulu.l %[y], %[x] \n" /* get lower half, avoid emac stall */
"movclr.l %%acc0, %[t1] \n" /* get higher half */
"lsr.l #1, %[t1] \n"
"move.w %[t1], %[x] \n"
"swap %[x] \n"
: /* outputs */
[t1]"=&d"(t1),
[x] "+d" (x)
: /* inputs */
[y] "d" (y)
);
return x;
}
#else
fixed32 fixmul32(fixed32 x, fixed32 y)
{
fixed64 temp;
float lol;
// int filehandle = rb->open("/mul.txt", O_WRONLY|O_CREAT|O_APPEND);
lol= fixtof64(x) * fixtof64(y);
temp = x;
temp *= y;
temp >>= PRECISION;
//rb->fdprintf(filehandle,"%d\n", (fixed32)temp);
//rb->close(filehandle);
return (fixed32)temp;
}
#endif
//thanks MAD!
//mgg: special fixmul32 that does a 16.16 x 1.31 multiply that returns a 16.16 value.
//this is needed because the fft constants are all normalized to be less then 1 and can't fit into a 16 bit number
#ifdef CPU_ARM
# define fixmul32b(x, y) \
({ int32_t __hi; \
uint32_t __lo; \
int32_t __result; \
asm ("smull %0, %1, %3, %4\n\t" \
"movs %0, %0, lsr %5\n\t" \
"adc %2, %0, %1, lsl %6" \
: "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
: "%r" (x), "r" (y), \
"M" (31), "M" (1) \
: "cc"); \
__result; \
})
#elif !defined(CPU_COLDFIRE)
static fixed32 fixmul32b(fixed32 x, fixed32 y)
{
fixed64 temp;
temp = x;
temp *= y;
temp >>= 31; //16+31-16 = 31 bits
return (fixed32)temp;
}
#endif
static fixed64 fixmul64byfixed(fixed64 x, fixed32 y)
{
//return x * y;
return (x * y);
// return (fixed64) fixmul32(Fixed32From64(x),y);
}
fixed32 fixdiv32(fixed32 x, fixed32 y)
{
fixed64 temp;
if(x == 0)
return 0;
if(y == 0)
return 0x7fffffff;
temp = x;
temp <<= PRECISION;
return (fixed32)(temp / y);
}
static fixed64 fixdiv64(fixed64 x, fixed64 y)
{
fixed64 temp;
if(x == 0)
return 0;
if(y == 0)
return 0x07ffffffffffffffLL;
temp = x;
temp <<= PRECISION64;
return (fixed64)(temp / y);
}
static fixed32 fixsqrt32(fixed32 x)
{
unsigned long r = 0, s, v = (unsigned long)x;
#define STEP(k) s = r + (1 << k * 2); r >>= 1; \
if (s <= v) { v -= s; r |= (1 << k * 2); }
STEP(15);
STEP(14);
STEP(13);
STEP(12);
STEP(11);
STEP(10);
STEP(9);
STEP(8);
STEP(7);
STEP(6);
STEP(5);
STEP(4);
STEP(3);
STEP(2);
STEP(1);
STEP(0);
return (fixed32)(r << (PRECISION / 2));
}
__inline fixed32 fixsin32(fixed32 x)
{
fixed64 x2, temp;
int sign = 1;
if(x < 0)
{
sign = -1;
x = -x;
}
while (x > 0x19220)
{
x -= M_PI_F;
sign = -sign;
}
if (x > 0x19220)
{
x = M_PI_F - x;
}
x2 = (fixed64)x * x;
x2 >>= PRECISION;
if(sign != 1)
{
x = -x;
}
/**
temp = ftofix32(-.0000000239f) * x2;
temp >>= PRECISION;
**/
temp = 0; // PJJ
//temp = (temp + 0x0) * x2; //MGG: this can't possibly do anything?
//temp >>= PRECISION;
temp = (temp - 0xd) * x2;
temp >>= PRECISION;
temp = (temp + 0x222) * x2;
temp >>= PRECISION;
temp = (temp - 0x2aab) * x2;
temp >>= PRECISION;
temp += 0x10000;
temp = temp * x;
temp >>= PRECISION;
return (fixed32)(temp);
}
__inline fixed32 fixcos32(fixed32 x)
{
return fixsin32(x - (M_PI_F>>1))*-1;
}
/* Inverse gain of circular cordic rotation in s0.31 format. */
static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
static const unsigned long atan_table[] = {
0x1fffffff, /* +0.785398163 (or pi/4) */
0x12e4051d, /* +0.463647609 */
0x09fb385b, /* +0.244978663 */
0x051111d4, /* +0.124354995 */
0x028b0d43, /* +0.062418810 */
0x0145d7e1, /* +0.031239833 */
0x00a2f61e, /* +0.015623729 */
0x00517c55, /* +0.007812341 */
0x0028be53, /* +0.003906230 */
0x00145f2e, /* +0.001953123 */
0x000a2f98, /* +0.000976562 */
0x000517cc, /* +0.000488281 */
0x00028be6, /* +0.000244141 */
0x000145f3, /* +0.000122070 */
0x0000a2f9, /* +0.000061035 */
0x0000517c, /* +0.000030518 */
0x000028be, /* +0.000015259 */
0x0000145f, /* +0.000007629 */
0x00000a2f, /* +0.000003815 */
0x00000517, /* +0.000001907 */
0x0000028b, /* +0.000000954 */
0x00000145, /* +0.000000477 */
0x000000a2, /* +0.000000238 */
0x00000051, /* +0.000000119 */
0x00000028, /* +0.000000060 */
0x00000014, /* +0.000000030 */
0x0000000a, /* +0.000000015 */
0x00000005, /* +0.000000007 */
0x00000002, /* +0.000000004 */
0x00000001, /* +0.000000002 */
0x00000000, /* +0.000000001 */
0x00000000, /* +0.000000000 */
};
/**
* Implements sin and cos using CORDIC rotation.
*
* @param phase has range from 0 to 0xffffffff, representing 0 and
* 2*pi respectively.
* @param cos return address for cos
* @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
* representing -1 and 1 respectively.
*
* Gives at least 24 bits precision (last 2-8 bits or so are probably off)
*/
static long fsincos(unsigned long phase, fixed32 *cos)
{
int32_t x, x1, y, y1;
unsigned long z, z1;
int i;
/* Setup initial vector */
x = cordic_circular_gain;
y = 0;
z = phase;
/* The phase has to be somewhere between 0..pi for this to work right */
if (z < 0xffffffff / 4) {
/* z in first quadrant, z += pi/2 to correct */
x = -x;
z += 0xffffffff / 4;
} else if (z < 3 * (0xffffffff / 4)) {
/* z in third quadrant, z -= pi/2 to correct */
z -= 0xffffffff / 4;
} else {
/* z in fourth quadrant, z -= 3pi/2 to correct */
x = -x;
z -= 3 * (0xffffffff / 4);
}
/* Each iteration adds roughly 1-bit of extra precision */
for (i = 0; i < 31; i++) {
x1 = x >> i;
y1 = y >> i;
z1 = atan_table[i];
/* Decided which direction to rotate vector. Pivot point is pi/2 */
if (z >= 0xffffffff / 4) {
x -= y1;
y += x1;
z -= z1;
} else {
x += y1;
y -= x1;
z += z1;
}
}
if (cos)
*cos = x;
return y;
}
/*
__inline fixed32 fixasin32(fixed32 x)
{
fixed64 temp;
int sign = 1;
if(x > 0x10000 || x < 0xffff0000)
{
return 0;
}
if(x < 0)
{
sign = -1;
x = -x;
}
temp = 0xffffffad * (fixed64)x;
temp >>= PRECISION;
temp = (temp + 0x1b5) * x;
temp >>= PRECISION;
temp = (temp - 0x460) * x;
temp >>= PRECISION;
temp = (temp + 0x7e9) * x;
temp >>= PRECISION;
temp = (temp - 0xcd8) * x;
temp >>= PRECISION;
temp = (temp + 0x16c7) * x;
temp >>= PRECISION;
temp = (temp - 0x36f0) * x;
temp >>= PRECISION;
temp = (temp + 0x19220) * fixsqrt32(0x10000 - x);
temp >>= PRECISION;
return sign * ((M_PI_F>>1) - (fixed32)temp);
}
*/
#define ALT_BITSTREAM_READER
#define unaligned32(a) (*(uint32_t*)(a))
uint16_t bswap_16(uint16_t x)
{
uint16_t hi = x & 0xff00;
uint16_t lo = x & 0x00ff;
return (hi >> 8) | (lo << 8);
}
uint32_t bswap_32(uint32_t x)
{
uint32_t b1 = x & 0xff000000;
uint32_t b2 = x & 0x00ff0000;
uint32_t b3 = x & 0x0000ff00;
uint32_t b4 = x & 0x000000ff;
return (b1 >> 24) | (b2 >> 8) | (b3 << 8) | (b4 << 24);
}
#ifdef CPU_COLDFIRE
static inline
void CMUL(fixed32 *x, fixed32 *y,
fixed32 a, fixed32 b,
fixed32 t, fixed32 v)
{
asm volatile ("mac.l %[a], %[t], %%acc0;"
"msac.l %[b], %[v], %%acc0;"
"mac.l %[b], %[t], %%acc1;"
"mac.l %[a], %[v], %%acc1;"
"movclr.l %%acc0, %[a];"
"move.l %[a], (%[x]);"
"movclr.l %%acc1, %[a];"
"move.l %[a], (%[y]);"
: [a] "+&r" (a)
: [x] "a" (x), [y] "a" (y),
[b] "r" (b), [t] "r" (t), [v] "r" (v)
: "cc", "memory");
}
#else
// PJJ : reinstate macro
void CMUL(fixed32 *pre,
fixed32 *pim,
fixed32 are,
fixed32 aim,
fixed32 bre,
fixed32 bim)
{
//int64_t x,y;
fixed32 _aref = are;
fixed32 _aimf = aim;
fixed32 _bref = bre;
fixed32 _bimf = bim;
fixed32 _r1 = fixmul32b(_bref, _aref);
fixed32 _r2 = fixmul32b(_bimf, _aimf);
fixed32 _r3 = fixmul32b(_bref, _aimf);
fixed32 _r4 = fixmul32b(_bimf, _aref);
*pre = _r1 - _r2;
*pim = _r3 + _r4;
}
#endif
typedef struct CoefVLCTable
{
int n; /* total number of codes */
const uint32_t *huffcodes; /* VLC bit values */
const uint8_t *huffbits; /* VLC bit size */
const uint16_t *levels; /* table to build run/level tables */
}
CoefVLCTable;
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
int fft_calc(FFTContext *s, FFTComplex *z);
//static variables that replace malloced stuff
fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
fixed32 *tcosarray[5], *tsinarray[5];
fixed32 tcos0[1024], tcos1[512], tcos2[256], tcos3[128], tcos4[64]; //these are the sin and cos rotations used by the MDCT
fixed32 tsin0[1024], tsin1[512], tsin2[256], tsin3[128], tsin4[64];
FFTComplex *exparray[5]; //these are the fft lookup tables
uint16_t *revarray[5];
FFTComplex exptab0[512] IBSS_ATTR;//, exptab1[256], exptab2[128], exptab3[64], exptab4[32]; //folded these in!
uint16_t revtab0[1024], revtab1[512], revtab2[256], revtab3[128], revtab4[64];
uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
//may also be too large by ~ 1KB each?
static VLC_TYPE vlcbuf1[6144][2];
static VLC_TYPE vlcbuf2[3584][2];
static VLC_TYPE vlcbuf3[1536][2] IBSS_ATTR; //small so lets try iram
//fixed32 window[BLOCK_MAX_SIZE * 2];
const fixed64 pow_table[] =
{
0x10000LL,0x11f3dLL,0x14249LL,0x1699cLL,0x195bcLL,0x1c73dLL,0x1fec9LL,0x23d1dLL,0x2830bLL,0x2d182LL,
0x3298bLL,0x38c53LL,0x3fb28LL,0x47783LL,0x5030aLL,0x59f98LL,0x64f40LL,0x71457LL,0x7f17bLL,0x8e99aLL,
0xa0000LL,0xb385eLL,0xc96d9LL,0xe2019LL,0xfd954LL,0x11c865LL,0x13f3dfLL,0x166320LL,0x191e6eLL,0x1c2f10LL,
0x1f9f6eLL,0x237b39LL,0x27cf8bLL,0x2cab1aLL,0x321e65LL,0x383bf0LL,0x3f1882LL,0x46cb6aLL,0x4f6eceLL,0x592006LL,
0x640000LL,0x7033acLL,0x7de47eLL,0x8d40f6LL,0x9e7d44LL,0xb1d3f4LL,0xc786b7LL,0xdfdf43LL,0xfb304bLL,0x119d69aLL,
0x13c3a4eLL,0x162d03aLL,0x18e1b70LL,0x1beaf00LL,0x1f52feeLL,0x2325760LL,0x276f514LL,0x2c3f220LL,0x31a5408LL,
0x37b403cLL,0x3e80000LL,0x46204b8LL,0x4eaece8LL,0x58489a0LL,0x630e4a8LL,0x6f24788LL,0x7cb4328LL,0x8beb8a0LL,
0x9cfe2f0LL,0xb026200LL,0xc5a4710LL,0xddc2240LL,0xf8d1260LL,0x1172d600LL,0x1393df60LL,0x15f769c0LL,0x18a592c0LL,
0x1ba77540LL,0x1f074840LL,0x22d08280LL,0x27100000LL,0x2bd42f40LL,0x312d4100LL,0x372d6000LL,0x3de8ee80LL,
0x4576cb80LL,0x4df09f80LL,0x57733600LL,0x621edd80LL,0x6e17d480LL,0x7b86c700LL,0x8a995700LL,0x9b82b800LL,
0xae7c5c00LL,0xc3c6b900LL,0xdbaa2200LL,0xf677bc00LL,0x1148a9400LL,0x13648d200LL,0x15c251800LL,0x186a00000LL,
0x1b649d800LL,0x1ebc48a00LL,0x227c5c000LL,0x26b195000LL,0x2b6a3f000LL,0x30b663c00LL,0x36a801c00LL,0x3d534a400LL,
0x44cee4800LL,0x4d343c800LL,0x569fd6000LL,0x6131b2800LL,0x6d0db9800LL,0x7a5c33800LL,0x894a55000LL,0x9a0ad6000LL,
0xacd69d000LL,0xc1ed84000LL,0xd9972f000LL,0xf42400000LL,0x111ee28000LL,0x1335ad6000LL,0x158db98000LL,0x182efd4000LL,
0x1b22676000LL,0x1e71fe6000LL,0x2229014000LL,0x26540e8000LL,0x2b014f0000LL,0x3040a5c000LL,0x3623e60000LL,0x3cbf0fc000LL,
0x4428940000LL,0x4c79a08000LL,0x55ce758000LL,0x6046c58000LL,0x6c06220000LL,0x7934728000LL,0x87fe7d0000LL,0x9896800000LL,
0xab34d90000LL,0xc018c60000LL,0xd7893f0000LL,0xf1d5e40000LL,0x10f580a0000LL,0x13073f00000LL,0x1559a0c0000LL,0x17f48900000LL,
0x1ae0d160000LL,0x1e286780000LL,0x21d66fc0000LL,0x25f769c0000LL,0x2a995c80000LL,0x2fcc0440000LL,0x35a10940000LL,
0x3c2c3b80000LL,0x4383d500000LL,0x4bc0c780000LL,0x54ff0e80000LL,0x5f5e1000000LL,0x6b010780000LL,0x780f7c00000LL,
0x86b5c800000LL,0x9725ae00000LL,0xa9970600000LL,0xbe487500000LL,0xd5804700000LL,0xef8d5a00000LL,0x10cc82e00000LL,
0x12d940c00000LL,0x152605c00000LL,0x17baa2200000LL,0x1a9fd9c00000LL,0x1ddf82a00000LL,0x2184a5c00000LL,0x259ba5400000LL,
0x2a3265400000LL,0x2f587cc00000LL,0x351f69000000LL,0x3b9aca000000LL,0x42e0a4800000LL,0x4b09ad800000LL,
0x54319d000000LL,0x5e778d000000LL,0x69fe64000000LL,0x76ed49800000LL,0x85702c000000LL,0x95b858000000LL,
0xa7fd1c000000LL,0xbc7c87000000LL,0xd37c3a000000LL,0xed4a55000000LL,0x10a3e82000000LL,0x12abb1a000000LL,
0x14f2e7a000000LL,0x1781474000000LL,0x1a5f7f4000000LL,0x1d974de000000LL,0x2133a18000000LL
};
const fixed32 pow_10_to_yover16[] ICONST_ATTR=
{
0x10000,0x127a0,0x15562,0x18a39,0x1c73d,0x20db4,0x25f12,0x2bd09,0x3298b,0x3a6d9,0x4378b,0x4dea3,
0x59f98,0x67e6b,0x77fbb,0x8a8de,0xa0000,0xb8c3e,0xd55d1,0xf6636,0x11c865,0x148906,0x17b6b8,0x1b625b,
0x1f9f6e,0x248475,0x2a2b6e,0x30b25f,0x383bf0,0x40f02c,0x4afd4b,0x5698b0,0x640000,0x737a6b,0x855a26,
0x99fe1f,0xb1d3f4,0xcd5a3e,0xed232b,0x111d78a,0x13c3a4e,0x16d2c94,0x1a5b24e,0x1e6f7b0,0x2325760,
0x28961b4,0x2ede4ec,0x361f6dc,0x3e80000,0x482c830,0x5358580,0x603ed30,0x6f24788,0x8058670,0x9435fb0,
0xab26b70,0xc5a4710,0xe43bdc0,0x1078f700,0x1305ace0,0x15f769c0,0x195dd100,0x1d4af120
};
const fixed32 pow_a_table[] =
{
0x1004,0x1008,0x100c,0x1010,0x1014,0x1018,0x101c,0x1021,0x1025,0x1029,0x102d,0x1031,0x1036,0x103a,
0x103e,0x1043,0x1047,0x104b,0x1050,0x1054,0x1059,0x105d,0x1062,0x1066,0x106b,0x106f,0x1074,0x1078,
0x107d,0x1082,0x1086,0x108b,0x1090,0x1095,0x1099,0x109e,0x10a3,0x10a8,0x10ad,0x10b2,0x10b7,0x10bc,
0x10c1,0x10c6,0x10cb,0x10d0,0x10d5,0x10da,0x10df,0x10e5,0x10ea,0x10ef,0x10f5,0x10fa,0x10ff,0x1105,
0x110a,0x1110,0x1115,0x111b,0x1120,0x1126,0x112c,0x1131,0x1137,0x113d,0x1143,0x1149,0x114f,0x1155,
0x115a,0x1161,0x1167,0x116d,0x1173,0x1179,0x117f,0x1186,0x118c,0x1192,0x1199,0x119f,0x11a6,0x11ac,
0x11b3,0x11b9,0x11c0,0x11c7,0x11ce,0x11d4,0x11db,0x11e2,0x11e9,0x11f0,0x11f8,0x11ff,0x1206,0x120d,
0x1215,0x121c,0x1223,0x122b,0x1233,0x123a,0x1242,0x124a,0x1251,0x1259,0x1261,0x1269,0x1271,0x127a,
0x1282,0x128a,0x1293,0x129b,0x12a4,0x12ac,0x12b5,0x12be,0x12c7,0x12d0,0x12d9,0x12e2,0x12eb,0x12f4,
0x12fe,0x1307
};
const fixed64 lsp_pow_e_table[] =
{
0xf333f9deLL, 0xf0518db9LL, 0x0LL, 0x7e656b4fLL, 0x7999fcefLL, 0xf828c6dcLL, 0x0LL,
0x3f32b5a7LL, 0x3cccfe78LL, 0xfc14636eLL, 0x0LL, 0x9f995ad4LL, 0x9e667f3cLL, 0xfe0a31b7LL,
0x0LL, 0x4fccad6aLL, 0x4f333f9eLL, 0x7f0518dcLL, 0x0LL, 0x27e656b5LL, 0x27999fcfLL,
0xbf828c6eLL, 0x0LL, 0x13f32b5aLL, 0x13cccfe7LL, 0xdfc14637LL, 0x0LL, 0x89f995adLL,
0x9e667f4LL, 0x6fe0a31bLL, 0x0LL, 0x44fccad7LL, 0x4f333faLL, 0x37f0518eLL, 0x0LL,
0xa27e656bLL, 0x827999fdLL, 0x1bf828c7LL, 0x0LL, 0xd13f32b6LL, 0x413cccfeLL, 0xdfc1463LL,
0x0LL, 0xe89f995bLL, 0xa09e667fLL, 0x6fe0a32LL, 0x0LL, 0x744fccadLL, 0x504f3340LL,
0x837f0519LL, 0x0LL, 0xba27e657LL, 0xa82799a0LL, 0xc1bf828cLL, 0x0LL, 0x5d13f32bLL,
0xd413ccd0LL, 0x60dfc146LL, 0x0LL, 0xae89f996LL, 0x6a09e668LL, 0x306fe0a3LL, 0x0LL,
0xd744fccbLL, 0xb504f334LL, 0x9837f052LL, 0x80000000LL, 0x6ba27e65LL, 0x5a82799aLL,
0x4c1bf829LL, 0x40000000LL, 0x35d13f33LL, 0x2d413ccdLL, 0x260dfc14LL, 0x20000000LL,
0x1ae89f99LL, 0x16a09e66LL, 0x1306fe0aLL, 0x10000000LL, 0xd744fcdLL, 0xb504f33LL,
0x9837f05LL, 0x8000000LL, 0x6ba27e6LL, 0x5a8279aLL, 0x4c1bf83LL, 0x4000000LL,
0x35d13f3LL, 0x2d413cdLL, 0x260dfc1LL, 0x2000000LL, 0x1ae89faLL, 0x16a09e6LL,
0x1306fe1LL, 0x1000000LL, 0xd744fdLL, 0xb504f3LL, 0x9837f0LL, 0x800000LL,
0x6ba27eLL, 0x5a827aLL, 0x4c1bf8LL, 0x400000LL, 0x35d13fLL, 0x2d413dLL,
0x260dfcLL, 0x200000LL, 0x1ae8a0LL, 0x16a09eLL, 0x1306feLL, 0x100000LL,
0xd7450LL, 0xb504fLL, 0x9837fLL, 0x80000LL, 0x6ba28LL, 0x5a828LL, 0x4c1c0LL,
0x40000LL, 0x35d14LL, 0x2d414LL, 0x260e0LL, 0x20000LL, 0x1ae8aLL, 0x16a0aLL,
0x13070LL, 0x10000LL, 0xd745LL, 0xb505LL, 0x9838LL, 0x8000LL, 0x6ba2LL,
0x5a82LL, 0x4c1cLL, 0x4000LL, 0x35d1LL, 0x2d41LL, 0x260eLL, 0x2000LL,
0x1ae9LL, 0x16a1LL, 0x1307LL, 0x1000LL, 0xd74LL, 0xb50LL, 0x983LL, 0x800LL,
0x6baLL, 0x5a8LL, 0x4c2LL, 0x400LL, 0x35dLL, 0x2d4LL, 0x261LL, 0x200LL, 0x1afLL,
0x16aLL, 0x130LL, 0x100LL, 0xd7LL, 0xb5LL, 0x98LL, 0x80LL, 0x6cLL, 0x5bLL,
0x4cLL, 0x40LL, 0x36LL, 0x2dLL, 0x26LL, 0x20LL, 0x1bLL, 0x17LL, 0x13LL,
0x10LL, 0xdLL, 0xbLL, 0xaLL, 0x8LL, 0x7LL, 0x6LL, 0x5LL, 0x4LL, 0x3LL,
0x3LL, 0x2LL, 0x2LL, 0x2LL, 0x1LL, 0x1LL, 0x1LL, 0x1LL, 0x1LL, 0x1LL,
0x1LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL, 0x0LL,
0x0LL, 0x0LL
};
#include "wmadata.h" // PJJ
/**
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
* done
*/
int fft_inits(FFTContext *s, int nbits, int inverse)
{
int i, j, m, n;
fixed32 alpha, c1, s1, ct, st;
int s2;
s->nbits = nbits;
n = 1 << nbits;
//s->exptab = exparray[10-nbits]; //not needed
//s->exptab = av_malloc((n >> 1) * sizeof(FFTComplex));
//if (!s->exptab)
// goto fail;
s->revtab = revarray[10-nbits];
//s->revtab = av_malloc(n * sizeof(uint16_t));
//if (!s->revtab)
// goto fail;
s->inverse = inverse;
s2 = inverse ? 1 : -1;
if(nbits == 10){ //we folded all these stupid tables into the nbits==10 table, so don't make it for the others!
//should probably just remove exptab building out of this function and do it higher up for neatness
for(i=0;i<(n/2);++i)
{
//we're going to redo this in CORDIC fixed format! Hold onto your butts
/*
input to cordic is from 0 ->2pi with 0->0 and 2^32-1 ->2pi
output, which is what we'll store the variables as is
-1->-2^31 and 1->2^31-1
*/
fixed32 ifix = itofix32(i);
fixed32 nfix = itofix32(n);
fixed32 res = fixdiv32(ifix,nfix); //this is really bad here since nfix can be as large as 1024 !
//also, make this a shift, since its a fucking power of two divide
alpha = fixmul32(TWO_M_PI_F, res);
ct = fixcos32(alpha); //need to correct alpha for 0->2pi scale
st = fixsin32(alpha);// * s2;
s1 = fsincos(res<<16, &c1); //does sin and cos in one pass!
//I really have my doubts about the correctness of the alpha to cordic mapping here, but it seems to work well enough
//double check this later!
exptab0[i].re = c1;
exptab0[i].im = s1*s2;
}
}
// s->fft_calc = fft_calc;
s->exptab1 = NULL;
/* compute bit reverse table */
for(i=0;i<n;i++)
{
m=0;
for(j=0;j<nbits;j++)
{
m |= ((i >> j) & 1) << (nbits-j-1);
}
s->revtab[i]=m;
}
return 0;
//fail:
// av_freep(&s->revtab);
// av_freep(&s->exptab);
// av_freep(&s->exptab1);
return -1;
}
/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
fixed32 ax, ay, bx, by;\
bx=pre1;\
by=pim1;\
ax=qre1;\
ay=qim1;\
pre = (bx + ax);\
pim = (by + ay);\
qre = (bx - ax);\
qim = (by - ay);\
}
//this goddamn butterfly could overflow and i'd neve rknow it...
//holy shit it was the fucking butterfly oh god this is the worst thing ever
int fft_calc_unscaled(FFTContext *s, FFTComplex *z)
{
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
// FFTComplex *exptab = s->exptab;
int l;
fixed32 tmp_re, tmp_im;
int tabshift = 10-ln;
np = 1 << ln;
/* pass 0 */
p=&z[0];
j=(np >> 1);
do
{
BF(p[0].re, p[0].im, p[1].re, p[1].im,
p[0].re, p[0].im, p[1].re, p[1].im);
p+=2;
}
while (--j != 0);
/* pass 1 */
p=&z[0];
j=np >> 2;
if (s->inverse)
{
do
{
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, -p[3].im, p[3].re);
p+=4;
}
while (--j != 0);
}
else
{
do
{
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, p[3].im, -p[3].re);
p+=4;
}
while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
do
{
p = z;
q = z + nloops;
for (j = 0; j < nblocks; ++j)
{
BF(p->re, p->im, q->re, q->im,
p->re, p->im, q->re, q->im);
p++;
q++;
for(l = nblocks; l < np2; l += nblocks)
{
CMUL(&tmp_re, &tmp_im, exptab0[(l<<tabshift)].re, exptab0[(l<<tabshift)].im, q->re, q->im);
//CMUL(&tmp_re, &tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
BF(p->re, p->im, q->re, q->im,
p->re, p->im, tmp_re, tmp_im);
p++;
q++;
}
p += nloops;
q += nloops;
}
nblocks = nblocks >> 1;
nloops = nloops << 1;
}
while (nblocks != 0);
return 0;
}
/*
//needless since we're statically allocated
void fft_end(FFTContext *s)
{
// av_freep(&s->revtab);
// av_freep(&s->exptab);
// av_freep(&s->exptab1);
}
*/
/* VLC decoding */
#define GET_VLC(code, name, gb, table, bits, max_depth)\
{\
int n, index, nb_bits;\
\
index= SHOW_UBITS(name, gb, bits);\
code = table[index][0];\
n = table[index][1];\
\
if(max_depth > 1 && n < 0){\
LAST_SKIP_BITS(name, gb, bits)\
UPDATE_CACHE(name, gb)\
\
nb_bits = -n;\
\
index= SHOW_UBITS(name, gb, nb_bits) + code;\
code = table[index][0];\
n = table[index][1];\
if(max_depth > 2 && n < 0){\
LAST_SKIP_BITS(name, gb, nb_bits)\
UPDATE_CACHE(name, gb)\
\
nb_bits = -n;\
\
index= SHOW_UBITS(name, gb, nb_bits) + code;\
code = table[index][0];\
n = table[index][1];\
}\
}\
SKIP_BITS(name, gb, n)\
}
//#define DEBUG_VLC
#define GET_DATA(v, table, i, wrap, size) \
{\
const uint8_t *ptr = (const uint8_t *)table + i * wrap;\
switch(size) {\
case 1:\
v = *(const uint8_t *)ptr;\
break;\
case 2:\
v = *(const uint16_t *)ptr;\
break;\
default:\
v = *(const uint32_t *)ptr;\
break;\
}\
}
// deprecated, dont use get_vlc for new code, use get_vlc2 instead or use GET_VLC directly
static inline int get_vlc(GetBitContext *s, VLC *vlc)
{
int code;
VLC_TYPE (*table)[2]= vlc->table;
OPEN_READER(re, s)
UPDATE_CACHE(re, s)
GET_VLC(code, re, s, table, vlc->bits, 3)
CLOSE_READER(re, s)
return code;
}
static int alloc_table(VLC *vlc, int size)
{
int index;
index = vlc->table_size;
vlc->table_size += size;
if (vlc->table_size > vlc->table_allocated)
{
// rb->splash(HZ*10, "OH CRAP, TRIED TO REALLOC A STATIC VLC TABLE!");
vlc->table_allocated += (1 << vlc->bits);
// vlc->table = av_realloc(vlc->table,
// sizeof(VLC_TYPE) * 2 * vlc->table_allocated);
if (!vlc->table)
return -1;
}
return index;
}
static int build_table(VLC *vlc, int table_nb_bits,
int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size,
uint32_t code_prefix, int n_prefix)
{
int i, j, k, n, table_size, table_index, nb, n1, index;
uint32_t code;
VLC_TYPE (*table)[2];
table_size = 1 << table_nb_bits;
table_index = alloc_table(vlc, table_size);
if (table_index < 0)
return -1;
table = &vlc->table[table_index];
for(i=0;i<table_size;i++)
{
table[i][1] = 0; //bits
table[i][0] = -1; //codes
}
/* first pass: map codes and compute auxillary table sizes */
for(i=0;i<nb_codes;i++)
{
GET_DATA(n, bits, i, bits_wrap, bits_size);
GET_DATA(code, codes, i, codes_wrap, codes_size);
/* we accept tables with holes */
if (n <= 0)
continue;
/* if code matches the prefix, it is in the table */
n -= n_prefix;
if (n > 0 && (code >> n) == code_prefix)
{
if (n <= table_nb_bits)
{
/* no need to add another table */
j = (code << (table_nb_bits - n)) & (table_size - 1);
nb = 1 << (table_nb_bits - n);
for(k=0;k<nb;k++)
{
if (table[j][1] /*bits*/ != 0)
{
// PJJ exit(-1);
}
table[j][1] = n; //bits
table[j][0] = i; //code
j++;
}
}
else
{
n -= table_nb_bits;
j = (code >> n) & ((1 << table_nb_bits) - 1);
/* compute table size */
n1 = -table[j][1]; //bits
if (n > n1)
n1 = n;
table[j][1] = -n1; //bits
}
}
}
/* second pass : fill auxillary tables recursively */
for(i=0;i<table_size;i++)
{
n = table[i][1]; //bits
if (n < 0)
{
n = -n;
if (n > table_nb_bits)
{
n = table_nb_bits;
table[i][1] = -n; //bits
}
index = build_table(vlc, n, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
(code_prefix << table_nb_bits) | i,
n_prefix + table_nb_bits);
if (index < 0)
return -1;
/* note: realloc has been done, so reload tables */
table = &vlc->table[table_index];
table[i][0] = index; //code
}
}
return table_index;
}
/* Build VLC decoding tables suitable for use with get_vlc().
'nb_bits' set thee decoding table size (2^nb_bits) entries. The
bigger it is, the faster is the decoding. But it should not be too
big to save memory and L1 cache. '9' is a good compromise.
'nb_codes' : number of vlcs codes
'bits' : table which gives the size (in bits) of each vlc code.
'codes' : table which gives the bit pattern of of each vlc code.
'xxx_wrap' : give the number of bytes between each entry of the
'bits' or 'codes' tables.
'xxx_size' : gives the number of bytes of each entry of the 'bits'
or 'codes' tables.
'wrap' and 'size' allows to use any memory configuration and types
(byte/word/long) to store the 'bits' and 'codes' tables.
*/
int init_vlc(VLC *vlc, int nb_bits, int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size)
{
vlc->bits = nb_bits;
// vlc->table = NULL;
// vlc->table_allocated = 0;
vlc->table_size = 0;
if (build_table(vlc, nb_bits, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
0, 0) < 0)
{
// av_free(vlc->table);
return -1;
}
//dump_table("Tab 1",vlc->table[0],vlc->table_size);
//dump_table("Tab 2",vlc->table[1],vlc->table_size);
return 0;
}
/**
* init MDCT or IMDCT computation.
*/
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
{
int n, n4, i;
// fixed32 alpha;
memset(s, 0, sizeof(*s));
n = 1 << nbits; //nbits ranges from 12 to 8 inclusive
s->nbits = nbits;
s->n = n;
n4 = n >> 2;
s->tcos = tcosarray[12-nbits];
s->tsin = tsinarray[12-nbits];
//s->tcos = av_malloc(n4 * sizeof(fixed32)); //this allocates between 1024 and 64 elements
//if (!s->tcos)
// goto fail;
//s->tsin = av_malloc(n4 * sizeof(fixed32));
//if (!s->tsin)
// goto fail;
//
for(i=0;i<n4;i++)
{
//fixed32 pi2 = fixmul32(0x20000, M_PI_F);
fixed32 ip = itofix32(i) + 0x2000;
ip = ip >> nbits;
//ip = fixdiv32(ip,itofix32(n)); // PJJ optimize
//alpha = fixmul32(TWO_M_PI_F, ip);
//s->tcos[i] = -fixcos32(alpha); //alpha between 0 and pi/2
//s->tsin[i] = -fixsin32(alpha);
s->tsin[i] = - fsincos(ip<<16, &(s->tcos[i])); //I can't remember why this works, but it seems to agree for ~24 bits, maybe more!
s->tcos[i] *=-1;
}
if (fft_inits(&s->fft, s->nbits - 2, inverse) < 0)
goto fail;
return 0;
fail:
// av_freep(&s->tcos);
// av_freep(&s->tsin);
return -1;
}
/**
* Compute inverse MDCT of size N = 2^nbits
* @param output N samples
* @param input N/2 samples
* @param tmp N/2 samples
*/
void ff_imdct_calc(MDCTContext *s,
fixed32 *output,
const fixed32 *input,
FFTComplex *tmp)
{
int k, n8, n4, n2, n, j,scale;
const uint16_t *revtab = s->fft.revtab;
const fixed32 *tcos = s->tcos;
const fixed32 *tsin = s->tsin;
const fixed32 *in1, *in2;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
for(k = 0; k < n4; k++)
{
j=revtab[k];
CMUL(&z[j].re, &z[j].im, *in2, *in1, tcos[k], tsin[k]);
in1 += 2;
in2 -= 2;
}
for(k = 0; k < n4; k++){
z[k].re >>=1;
z[k].im >>=1;
}
//rb->splash(HZ, "in MDCT calc");
scale = fft_calc_unscaled(&s->fft, z);
// scale = fft_calc(&s->fft, z);
//rb->splash(HZ, "in MDCT calc2");
/* post rotation + reordering */
for(k = 0; k < n4; k++)
{
CMUL(&z[k].re, &z[k].im, (z[k].re), (z[k].im), tcos[k], tsin[k]);
}
for(k = 0; k < n8; k++)
{
fixed32 r1,r2,r3,r4,r1n,r2n,r3n;
r1 = z[n8 + k].im;
r1n = r1 * -1;
r2 = z[n8-1-k].re;
r2n = r2 * -1;
r3 = z[k+n8].re;
r3n = r3 * -1;
r4 = z[n8-k-1].im;
output[2*k] = r1n;
output[n2-1-2*k] = r1;
output[2*k+1] = r2;
output[n2-1-2*k-1] = r2n;
output[n2 + 2*k]= r3n;
output[n-1- 2*k]= r3n;
output[n2 + 2*k+1]= r4;
output[n-2 - 2 * k] = r4;
}
}
void ff_mdct_end(MDCTContext *s)
{
(void)s;
// av_freep(&s->tcos);
// av_freep(&s->tsin);
// fft_end(&s->fft);
}
/* XXX: use same run/length optimization as mpeg decoders */
static void init_coef_vlc(VLC *vlc,
uint16_t **prun_table, uint16_t **plevel_table,
const CoefVLCTable *vlc_table, int tab)
{
int n = vlc_table->n;
const uint8_t *table_bits = vlc_table->huffbits;
const uint32_t *table_codes = vlc_table->huffcodes;
const uint16_t *levels_table = vlc_table->levels;
uint16_t *run_table, *level_table;
const uint16_t *p;
int i, l, j, level;
init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
run_table = runtabarray[tab];
//run_table = av_malloc(n * sizeof(uint16_t)); //max n should be 1336
level_table= levtabarray[tab];
//level_table = av_malloc(n * sizeof(uint16_t));
p = levels_table;
i = 2;
level = 1;
while (i < n)
{
l = *p++;
for(j=0;j<l;++j)
{
run_table[i] = j;
level_table[i] = level;
++i;
}
++level;
}
*prun_table = run_table;
*plevel_table = level_table;
}
int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
{
//WMADecodeContext *s = avctx->priv_data;
int i, flags1, flags2;
fixed32 *window;
uint8_t *extradata;
fixed64 bps1;
fixed32 high_freq;
fixed64 bps;
int sample_rate1;
int coef_vlc_table;
// int filehandle;
#ifdef CPU_COLDFIRE
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
#endif
s->sample_rate = wfx->rate;
s->nb_channels = wfx->channels;
s->bit_rate = wfx->bitrate;
s->block_align = wfx->blockalign;
if (wfx->codec_id == ASF_CODEC_ID_WMAV1){
s->version = 1;
}else{
s->version = 2;
}
/* extract flag infos */
flags1 = 0;
flags2 = 0;
extradata = wfx->data;
if (s->version == 1 && wfx->datalen >= 4) {
flags1 = extradata[0] | (extradata[1] << 8);
flags2 = extradata[2] | (extradata[3] << 8);
}else if (s->version == 2 && wfx->datalen >= 6){
flags1 = extradata[0] | (extradata[1] << 8) |
(extradata[2] << 16) | (extradata[3] << 24);
flags2 = extradata[4] | (extradata[5] << 8);
}
s->use_exp_vlc = flags2 & 0x0001;
s->use_bit_reservoir = flags2 & 0x0002;
s->use_variable_block_len = flags2 & 0x0004;
/* compute MDCT block size */
if (s->sample_rate <= 16000){
s->frame_len_bits = 9;
}else if (s->sample_rate <= 22050 ||
(s->sample_rate <= 32000 && s->version == 1)){
s->frame_len_bits = 10;
}else{
s->frame_len_bits = 11;
}
s->frame_len = 1 << s->frame_len_bits;
if (s-> use_variable_block_len)
{
int nb_max, nb;
nb = ((flags2 >> 3) & 3) + 1;
if ((s->bit_rate / s->nb_channels) >= 32000)
{
nb += 2;
}
nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
if (nb > nb_max)
nb = nb_max;
s->nb_block_sizes = nb + 1;
}
else
{
s->nb_block_sizes = 1;
}
/* init rate dependant parameters */
s->use_noise_coding = 1;
high_freq = fixmul64byfixed(itofix64(s->sample_rate), 0x8000);
/* if version 2, then the rates are normalized */
sample_rate1 = s->sample_rate;
if (s->version == 2)
{
if (sample_rate1 >= 44100)
sample_rate1 = 44100;
else if (sample_rate1 >= 22050)
sample_rate1 = 22050;
else if (sample_rate1 >= 16000)
sample_rate1 = 16000;
else if (sample_rate1 >= 11025)
sample_rate1 = 11025;
else if (sample_rate1 >= 8000)
sample_rate1 = 8000;
}
fixed64 tmp = itofix64(s->bit_rate);
fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
bps = fixdiv64(tmp, tmp2);
fixed64 tim = fixmul64byfixed(bps, s->frame_len);
fixed64 tmpi = fixdiv64(tim,itofix64(8));
s->byte_offset_bits = av_log2(fixtoi64(tmpi)) + 2;
/* compute high frequency value and choose if noise coding should
be activated */
bps1 = bps;
if (s->nb_channels == 2)
bps1 = fixmul32(bps,0x1999a);
if (sample_rate1 == 44100)
{
if (bps1 >= 0x9c29)
s->use_noise_coding = 0;
else
high_freq = fixmul64byfixed(high_freq,0x6666);
}
else if (sample_rate1 == 22050)
{
if (bps1 >= 0x128f6)
s->use_noise_coding = 0;
else if (bps1 >= 0xb852)
high_freq = fixmul64byfixed(high_freq,0xb333);
else
high_freq = fixmul64byfixed(high_freq,0x999a);
}
else if (sample_rate1 == 16000)
{
if (bps > 0x8000)
high_freq = fixmul64byfixed(high_freq,0x8000);
else
high_freq = fixmul64byfixed(high_freq,0x4ccd);
}
else if (sample_rate1 == 11025)
{
high_freq = fixmul64byfixed(high_freq,0xb3333);
}
else if (sample_rate1 == 8000)
{
if (bps <= 0xa000)
{
high_freq = fixmul64byfixed(high_freq,0x8000);
}
else if (bps > 0xc000)
{
s->use_noise_coding = 0;
}
else
{
high_freq = fixmul64byfixed(high_freq,0xa666);
}
}
else
{
if (bps >= 0xcccd)
{
high_freq = fixmul64byfixed(high_freq,0xc000);
}
else if (bps >= 0x999a)
{
high_freq = fixmul64byfixed(high_freq,0x999a);
}
else
{
high_freq = fixmul64byfixed(high_freq,0x8000);
}
}
/* compute the scale factor band sizes for each MDCT block size */
{
int a, b, pos, lpos, k, block_len, i, j, n;
const uint8_t *table;
if (s->version == 1)
{
s->coefs_start = 3;
}
else
{
s->coefs_start = 0;
}
for(k = 0; k < s->nb_block_sizes; ++k)
{
block_len = s->frame_len >> k;
if (s->version == 1)
{
lpos = 0;
for(i=0;i<25;++i)
{
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b >> 1)) / b;
if (pos > block_len)
pos = block_len;
s->exponent_bands[0][i] = pos - lpos;
if (pos >= block_len)
{
++i;
break;
}
lpos = pos;
}
s->exponent_sizes[0] = i;
}
else
{
/* hardcoded tables */
table = NULL;
a = s->frame_len_bits - BLOCK_MIN_BITS - k;
if (a < 3)
{
if (s->sample_rate >= 44100)
table = exponent_band_44100[a];
else if (s->sample_rate >= 32000)
table = exponent_band_32000[a];
else if (s->sample_rate >= 22050)
table = exponent_band_22050[a];
}
if (table)
{
n = *table++;
for(i=0;i<n;++i)
s->exponent_bands[k][i] = table[i];
s->exponent_sizes[k] = n;
}
else
{
j = 0;
lpos = 0;
for(i=0;i<25;++i)
{
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
pos <<= 2;
if (pos > block_len)
pos = block_len;
if (pos > lpos)
s->exponent_bands[k][j++] = pos - lpos;
if (pos >= block_len)
break;
lpos = pos;
}
s->exponent_sizes[k] = j;
}
}
/* max number of coefs */
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
/* high freq computation */
fixed64 tmp = itofix64(block_len<<2);
tmp = fixmul64byfixed(tmp,high_freq);
fixed64 tmp2 = itofix64(s->sample_rate);
tmp2 += 0x8000;
s->high_band_start[k] = fixtoi64(fixdiv64(tmp,tmp2));
/*
s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
s->sample_rate + 0.5);*/
n = s->exponent_sizes[k];
j = 0;
pos = 0;
for(i=0;i<n;++i)
{
int start, end;
start = pos;
pos += s->exponent_bands[k][i];
end = pos;
if (start < s->high_band_start[k])
start = s->high_band_start[k];
if (end > s->coefs_end[k])
end = s->coefs_end[k];
if (end > start)
s->exponent_high_bands[k][j++] = end - start;
}
s->exponent_high_sizes[k] = j;
}
}
/* init MDCT */
tcosarray[0] = tcos0; tcosarray[1] = tcos1; tcosarray[2] = tcos2; tcosarray[3] = tcos3;tcosarray[4] = tcos4;
tsinarray[0] = tsin0; tsinarray[1] = tsin1; tsinarray[2] = tsin2; tsinarray[3] = tsin3;tsinarray[4] = tsin4;
exparray[0] = exptab0; //exparray[1] = exptab1; exparray[2] = exptab2; exparray[3] = exptab3; exparray[4] = exptab4;
revarray[0]=revtab0; revarray[1]=revtab1; revarray[2]=revtab2; revarray[3]=revtab3; revarray[4]=revtab4;
for(i = 0; i < s->nb_block_sizes; ++i)
{
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
}
/*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
* In the worst case you can have 5 window sizes, 128 doubling up 2048
* Smaller windows are handled differently.
* Since we don't have malloc, just statically allocate this
*/
fixed32 *temp[5];
temp[0] = stat0;
temp[1] = stat1;
temp[2] = stat2;
temp[3] = stat3;
temp[4] = stat4;
/* init MDCT windows : simple sinus window */
for(i = 0; i < s->nb_block_sizes; i++)
{
int n, j;
fixed32 alpha;
n = 1 << (s->frame_len_bits - i);
//window = av_malloc(sizeof(fixed32) * n);
window = temp[i];
//fixed32 n2 = itofix32(n<<1); //2x the window length
//alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
//printf("two values of alpha %16.10lf %16.10lf\n", fixtof64(alpha), fixtof64(M_PI_F>>(s->frame_len_bits - i+1)));
alpha = M_PI_F>>(s->frame_len_bits - i+1);
for(j=0;j<n;++j)
{
fixed32 j2 = itofix32(j) + 0x8000;
window[n - j - 1] = fixsin32(fixmul32(j2,alpha)); //alpha between 0 and pi/2
}
//printf("created window\n");
s->windows[i] = window;
//printf("assigned window\n");
}
s->reset_block_lengths = 1;
if (s->use_noise_coding)
{
/* init the noise generator */
if (s->use_exp_vlc)
{
s->noise_mult = 0x51f;
}
else
{
s->noise_mult = 0xa3d;
}
{
unsigned int seed;
fixed32 norm;
seed = 1;
norm = 0; // PJJ: near as makes any diff to 0!
for (i=0;i<NOISE_TAB_SIZE;++i)
{
seed = seed * 314159 + 1;
s->noise_table[i] = itofix32((int)seed) * norm;
}
}
init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
hgain_huffbits, 1, 1,
hgain_huffcodes, 2, 2);
}
if (s->use_exp_vlc)
{
s->exp_vlc.table = vlcbuf3;
s->exp_vlc.table_allocated = 1536;
init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
scale_huffbits, 1, 1,
scale_huffcodes, 4, 4);
}
else
{
wma_lsp_to_curve_init(s, s->frame_len);
}
/* choose the VLC tables for the coefficients */
coef_vlc_table = 2;
if (s->sample_rate >= 32000)
{
if (bps1 < 0xb852)
coef_vlc_table = 0;
else if (bps1 < 0x128f6)
coef_vlc_table = 1;
}
runtabarray[0] = runtab0; runtabarray[1] = runtab1;
levtabarray[0] = levtab0; levtabarray[1] = levtab1;
s->coef_vlc[0].table = vlcbuf1;
s->coef_vlc[0].table_allocated = 24576/4;
s->coef_vlc[1].table = vlcbuf2;
s->coef_vlc[1].table_allocated = 14336/4;
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
&coef_vlcs[coef_vlc_table * 2], 0);
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
&coef_vlcs[coef_vlc_table * 2 + 1], 1);
//filehandle = rb->open("/log.txt", O_WRONLY|O_CREAT|O_APPEND);
//rb->fdprintf(filehandle,"In init:\n\nsample rate %d\nbit_rate %d\n version %d\n", s->sample_rate, s->bit_rate, s->version );
//rb->fdprintf(filehandle,"use_noise_coding %d \nframe_len %d\nframe_len_bits %d\n", s->use_noise_coding, s->frame_len, s->frame_len_bits);
//rb->fdprintf(filehandle,"use_bit_reservoir %d\n use_variable_block_len %d\n use_exp_vlc %d\n",s->use_bit_reservoir, s->use_variable_block_len, s->use_exp_vlc);
//rb->fdprintf(filehandle,"use_noise_coding %d\n byte_offset_bits %d\n use_exp_vlc %d\n",s->use_noise_coding, s->byte_offset_bits, s->use_exp_vlc);
//rb->close(filehandle);
return 0;
}
/* interpolate values for a bigger or smaller block. The block must
have multiple sizes */
static void interpolate_array(fixed32 *scale, int old_size, int new_size)
{
int i, j, jincr, k;
fixed32 v;
if (new_size > old_size)
{
jincr = new_size / old_size;
j = new_size;
for(i = old_size - 1; i >=0; --i)
{
v = scale[i];
k = jincr;
do
{
scale[--j] = v;
}
while (--k);
}
}
else if (new_size < old_size)
{
j = 0;
jincr = old_size / new_size;
for(i = 0; i < new_size; ++i)
{
scale[i] = scale[j];
j += jincr;
}
}
}
/* compute x^-0.25 with an exponent and mantissa table. We use linear
interpolation to reduce the mantissa table size at a small speed
expense (linear interpolation approximately doubles the number of
bits of precision). */
static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
{
union {
fixed64 f;
unsigned int v;
} u, t;
unsigned int e, m;
fixed64 a, b;
u.f = x;
e = u.v >> 23;
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
/* build interpolation scale: 1 <= t < 2. */
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
a = s->lsp_pow_m_table1[m];
b = s->lsp_pow_m_table2[m];
return lsp_pow_e_table[e] * (a + b * t.f);
}
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
{
fixed32 wdel, a, b;
int i, m;
wdel = fixdiv32(M_PI_F, itofix32(frame_len));
for (i=0; i<frame_len; ++i)
{
s->lsp_cos_table[i] = 0x20000 * fixcos32(wdel * i); //wdel*i between 0 and pi
}
/* NOTE: these two tables are needed to avoid two operations in
pow_m1_4 */
b = itofix32(1);
int ix = 0;
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
{
m = (1 << LSP_POW_BITS) + i;
a = m * (0x8000 / (1 << LSP_POW_BITS)); //PJJ
a = pow_a_table[ix++]; // PJJ : further refinement
s->lsp_pow_m_table1[i] = 2 * a - b;
s->lsp_pow_m_table2[i] = b - a;
b = a;
}
}
/* NOTE: We use the same code as Vorbis here */
/* XXX: optimize it further with SSE/3Dnow */
static void wma_lsp_to_curve(WMADecodeContext *s,
fixed32 *out,
fixed32 *val_max_ptr,
int n,
fixed32 *lsp)
{
int i, j;
fixed32 p, q, w, v, val_max;
val_max = 0;
for(i=0;i<n;++i)
{
p = 0x8000;
q = 0x8000;
w = s->lsp_cos_table[i];
for (j=1;j<NB_LSP_COEFS;j+=2)
{
q *= w - lsp[j - 1];
p *= w - lsp[j];
}
p *= p * (0x20000 - w);
q *= q * (0x20000 + w);
v = p + q;
v = pow_m1_4(s, v); // PJJ
if (v > val_max)
val_max = v;
out[i] = v;
}
*val_max_ptr = val_max;
}
/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
static void decode_exp_lsp(WMADecodeContext *s, int ch)
{
fixed32 lsp_coefs[NB_LSP_COEFS];
int val, i;
for (i = 0; i < NB_LSP_COEFS; ++i)
{
if (i == 0 || i >= 8)
val = get_bits(&s->gb, 3);
else
val = get_bits(&s->gb, 4);
lsp_coefs[i] = lsp_codebook[i][val];
}
wma_lsp_to_curve(s,
s->exponents[ch],
&s->max_exponent[ch],
s->block_len,
lsp_coefs);
}
/* decode exponents coded with VLC codes */
static int decode_exp_vlc(WMADecodeContext *s, int ch)
{
int last_exp, n, code;
const uint16_t *ptr, *band_ptr;
fixed32 v, max_scale;
fixed32 *q,*q_end;
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
ptr = band_ptr;
q = s->exponents[ch];
q_end = q + s->block_len;
max_scale = 0;
if (s->version == 1) //wmav1 only
{
last_exp = get_bits(&s->gb, 5) + 10;
/* XXX: use a table */
v = pow_10_to_yover16[last_exp];
max_scale = v;
n = *ptr++;
do
{
*q++ = v;
}
while (--n);
}
last_exp = 36;
while (q < q_end)
{
code = get_vlc(&s->gb, &s->exp_vlc);
if (code < 0)
{
return -1;
}
/* NOTE: this offset is the same as MPEG4 AAC ! */
last_exp += code - 60;
/* XXX: use a table */
v = pow_10_to_yover16[last_exp];
if (v > max_scale)
{
max_scale = v;
}
n = *ptr++;
do
{
*q++ = v;
}
while (--n);
}
s->max_exponent[ch] = max_scale;
return 0;
}
/* return 0 if OK. return 1 if last block of frame. return -1 if
unrecorrable error. */
static int wma_decode_block(WMADecodeContext *s)
{
int n, v, a, ch, code, bsize;
int coef_nb_bits, total_gain, parse_exponents;
static fixed32 window[BLOCK_MAX_SIZE * 2]; //crap can't do this locally on the device! its big as the whole stack
int nb_coefs[MAX_CHANNELS];
fixed32 mdct_norm;
//int filehandle = rb->open("/mul.txt", O_WRONLY|O_CREAT|O_APPEND);
// rb->fdprintf(filehandle,"\nIn wma_decode_block:\n use_variable_block_len %d\n nb_block_sizes %d\n reset_block_lengths %d\n", s->use_variable_block_len, s->nb_block_sizes, s->reset_block_lengths );
// printf("***decode_block: %d:%d (%d)\n", s->frame_count - 1, s->block_num, s->block_len);
/* compute current block length */
if (s->use_variable_block_len)
{
n = av_log2(s->nb_block_sizes - 1) + 1;
if (s->reset_block_lengths)
{
s->reset_block_lengths = 0;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
{
return -2;
}
s->prev_block_len_bits = s->frame_len_bits - v;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
{
return -3;
}
s->block_len_bits = s->frame_len_bits - v;
}
else
{
/* update block lengths */
s->prev_block_len_bits = s->block_len_bits;
s->block_len_bits = s->next_block_len_bits;
}
v = get_bits(&s->gb, n);
//rb->fdprintf(filehandle,"v %d \n prev_block_len_bits %d\n block_len_bits %d\n", v, s->prev_block_len_bits, s->block_len_bits);
//rb->close(filehandle);
LOGF("v was %d", v);
if (v >= s->nb_block_sizes)
{
// rb->splash(HZ*4, "v was %d", v); //5, 7
return -4; //this is it
}
else{
//rb->splash(HZ, "passed v block (%d)!", v);
}
s->next_block_len_bits = s->frame_len_bits - v;
}
else
{
/* fixed block len */
s->next_block_len_bits = s->frame_len_bits;
s->prev_block_len_bits = s->frame_len_bits;
s->block_len_bits = s->frame_len_bits;
}
/* now check if the block length is coherent with the frame length */
s->block_len = 1 << s->block_len_bits;
if ((s->block_pos + s->block_len) > s->frame_len)
{
return -5;
}
if (s->nb_channels == 2)
{
s->ms_stereo = get_bits(&s->gb, 1);
}
v = 0;
for (ch = 0; ch < s->nb_channels; ++ch)
{
a = get_bits(&s->gb, 1);
s->channel_coded[ch] = a;
v |= a;
}
/* if no channel coded, no need to go further */
/* XXX: fix potential framing problems */
if (!v)
{
goto next;
}
bsize = s->frame_len_bits - s->block_len_bits;
/* read total gain and extract corresponding number of bits for
coef escape coding */
total_gain = 1;
for(;;)
{
a = get_bits(&s->gb, 7);
total_gain += a;
if (a != 127)
{
break;
}
}
if (total_gain < 15)
coef_nb_bits = 13;
else if (total_gain < 32)
coef_nb_bits = 12;
else if (total_gain < 40)
coef_nb_bits = 11;
else if (total_gain < 45)
coef_nb_bits = 10;
else
coef_nb_bits = 9;
/* compute number of coefficients */
n = s->coefs_end[bsize] - s->coefs_start;
for(ch = 0; ch < s->nb_channels; ++ch)
{
nb_coefs[ch] = n;
}
/* complex coding */
if (s->use_noise_coding)
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int i, n, a;
n = s->exponent_high_sizes[bsize];
for(i=0;i<n;++i)
{
a = get_bits(&s->gb, 1);
s->high_band_coded[ch][i] = a;
/* if noise coding, the coefficients are not transmitted */
if (a)
nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
}
}
}
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int i, n, val, code;
n = s->exponent_high_sizes[bsize];
val = (int)0x80000000;
for(i=0;i<n;++i)
{
if (s->high_band_coded[ch][i])
{
if (val == (int)0x80000000)
{
val = get_bits(&s->gb, 7) - 19;
}
else
{
code = get_vlc(&s->gb, &s->hgain_vlc);
if (code < 0)
{
return -6;
}
val += code - 18;
}
s->high_band_values[ch][i] = val;
}
}
}
}
}
/* exposant can be interpolated in short blocks. */
parse_exponents = 1;
if (s->block_len_bits != s->frame_len_bits)
{
parse_exponents = get_bits(&s->gb, 1);
}
if (parse_exponents)
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
if (s->use_exp_vlc)
{
if (decode_exp_vlc(s, ch) < 0)
{
return -7;
}
}
else
{
decode_exp_lsp(s, ch);
}
}
}
}
else
{
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
interpolate_array(s->exponents[ch],
1 << s->prev_block_len_bits,
s->block_len);
}
}
}
//ok up to here!
//printf("got here!\n");
//rb->splash(HZ, "in wma_decode_block 2");
/* parse spectral coefficients : just RLE encoding */
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
VLC *coef_vlc;
int level, run, sign, tindex;
int16_t *ptr, *eptr;
const int16_t *level_table, *run_table;
/* special VLC tables are used for ms stereo because
there is potentially less energy there */
tindex = (ch == 1 && s->ms_stereo);
coef_vlc = &s->coef_vlc[tindex];
run_table = s->run_table[tindex];
level_table = s->level_table[tindex];
/* XXX: optimize */
ptr = &s->coefs1[ch][0];
eptr = ptr + nb_coefs[ch];
memset(ptr, 0, s->block_len * sizeof(int16_t));
for(;;)
{
code = get_vlc(&s->gb, coef_vlc);
if (code < 0)
{
return -8;
}
if (code == 1)
{
/* EOB */
break;
}
else if (code == 0)
{
/* escape */
level = get_bits(&s->gb, coef_nb_bits);
/* NOTE: this is rather suboptimal. reading
block_len_bits would be better */
run = get_bits(&s->gb, s->frame_len_bits);
}
else
{
/* normal code */
run = run_table[code];
level = level_table[code];
}
sign = get_bits(&s->gb, 1);
if (!sign)
level = -level;
ptr += run;
if (ptr >= eptr)
{
return -9;
}
*ptr++ = level;
/* NOTE: EOB can be omitted */
if (ptr >= eptr)
break;
}
}
if (s->version == 1 && s->nb_channels >= 2)
{
align_get_bits(&s->gb);
}
}
{
int n4 = s->block_len >> 1;
//mdct_norm = 0x10000;
//mdct_norm = fixdiv32(mdct_norm,itofix32(n4));
mdct_norm = 0x10000>>(s->block_len_bits-1); //theres no reason to do a divide by two in fixed precision ...
if (s->version == 1)
{
fixed32 tmp = fixsqrt32(itofix32(n4));
mdct_norm *= tmp; // PJJ : exercise this path
}
}
//rb->splash(HZ, "in wma_decode_block 3");
/* finally compute the MDCT coefficients */
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
int16_t *coefs1;
fixed32 *exponents, *exp_ptr;
fixed32 *coefs, atemp;
fixed64 mult;
fixed64 mult1;
fixed32 noise;
int i, j, n, n1, last_high_band;
fixed32 exp_power[HIGH_BAND_MAX_SIZE];
//double test, mul;
//total_gain, coefs1, mdctnorm are lossless
coefs1 = s->coefs1[ch];
exponents = s->exponents[ch];
mult = fixdiv64(pow_table[total_gain],Fixed32To64(s->max_exponent[ch]));
// mul = fixtof64(pow_table[total_gain])/(s->block_len/2)/fixtof64(s->max_exponent[ch]);
mult = fixmul64byfixed(mult, mdct_norm); //what the hell? This is actually fixed64*2^16!
coefs = s->coefs[ch]; //VLC exponenents are used to get MDCT coef here!
n=0;
if (s->use_noise_coding)
{
mult1 = mult;
/* very low freqs : noise */
for(i = 0;i < s->coefs_start; ++i)
{
*coefs++ = fixmul32(fixmul32(s->noise_table[s->noise_index],(*exponents++)),Fixed32From64(mult1));
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
n1 = s->exponent_high_sizes[bsize];
/* compute power of high bands */
exp_ptr = exponents +
s->high_band_start[bsize] -
s->coefs_start;
last_high_band = 0; /* avoid warning */
for (j=0;j<n1;++j)
{
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
if (s->high_band_coded[ch][j])
{
fixed32 e2, v;
e2 = 0;
for(i = 0;i < n; ++i)
{
v = exp_ptr[i];
e2 += v * v;
}
exp_power[j] = fixdiv32(e2,n);
last_high_band = j;
}
exp_ptr += n;
}
/* main freqs and high freqs */
for(j=-1;j<n1;++j)
{
if (j < 0)
{
n = s->high_band_start[bsize] -
s->coefs_start;
}
else
{
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
}
if (j >= 0 && s->high_band_coded[ch][j])
{
/* use noise with specified power */
fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
mult1 = (fixed64)fixsqrt32(tmp);
/* XXX: use a table */
mult1 = mult1 * pow_table[s->high_band_values[ch][j]];
mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
mult1 = fixmul64byfixed(mult1,mdct_norm);
for(i = 0;i < n; ++i)
{
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = fixmul32(fixmul32(*exponents,noise),Fixed32From64(mult1));
++exponents;
}
}
else
{
/* coded values + small noise */
for(i = 0;i < n; ++i)
{
// PJJ: check code path
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = fixmul32(fixmul32(((*coefs1++) + noise),*exponents),mult);
++exponents;
}
}
}
/* very high freqs : noise */
n = s->block_len - s->coefs_end[bsize];
mult1 = fixmul32(mult,exponents[-1]);
for (i = 0; i < n; ++i)
{
*coefs++ = fixmul32(s->noise_table[s->noise_index],Fixed32From64(mult1));
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
}
else
{
/* XXX: optimize more */
for(i = 0;i < s->coefs_start; ++i)
*coefs++ = 0; //why do we do this step?!
n = nb_coefs[ch];
for(i = 0;i < n; ++i)
{
atemp = (fixed32)(coefs1[i]*mult>>16);
//atemp= ftofix32(coefs1[i] * fixtof64(exponents[i]) * fixtof64(mult>>16)); //this "works" in the sense that the mdcts converge
*coefs++=fixmul32(atemp,exponents[i]); //this does not work
//atemp = ftofix32( coefs1[i]*mul* fixtof64(exponents[i]) ); //this doesn't seem to help any at all.
// *coefs++=atemp;
} //coefs1 could underflow?
n = s->block_len - s->coefs_end[bsize];
for(i = 0;i < n; ++i)
*coefs++ = 0;
}
}
}
//rb->splash(HZ, "in wma_decode_block 3b");
if (s->ms_stereo && s->channel_coded[1])
{
fixed32 a, b;
int i;
/* nominal case for ms stereo: we do it before mdct */
/* no need to optimize this case because it should almost
never happen */
if (!s->channel_coded[0])
{
memset(s->coefs[0], 0, sizeof(fixed32) * s->block_len);
s->channel_coded[0] = 1;
}
for(i = 0; i < s->block_len; ++i)
{
a = s->coefs[0][i];
b = s->coefs[1][i];
s->coefs[0][i] = a + b;
s->coefs[1][i] = a - b;
}
}
//rb->splash(HZ, "in wma_decode_block 3c");
/* build the window : we ensure that when the windows overlap
their squared sum is always 1 (MDCT reconstruction rule) */
/* XXX: merge with output */
{
int i, next_block_len, block_len, prev_block_len, n;
fixed32 *wptr;
block_len = s->block_len;
prev_block_len = 1 << s->prev_block_len_bits;
next_block_len = 1 << s->next_block_len_bits;
//rb->splash(HZ, "in wma_decode_block 3d"); //got here
/* right part */
wptr = window + block_len;
if (block_len <= next_block_len)
{
for(i=0;i<block_len;++i)
*wptr++ = s->windows[bsize][i];
}
else
{
/* overlap */
n = (block_len / 2) - (next_block_len / 2);
for(i=0;i<n;++i)
*wptr++ = itofix32(1);
for(i=0;i<next_block_len;++i)
*wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
for(i=0;i<n;++i)
*wptr++ = 0;
}
//rb->splash(HZ, "in wma_decode_block 3e");
/* left part */
wptr = window + block_len;
if (block_len <= prev_block_len)
{
for(i=0;i<block_len;++i)
*--wptr = s->windows[bsize][i];
}
else
{
/* overlap */
n = (block_len / 2) - (prev_block_len / 2);
for(i=0;i<n;++i)
*--wptr = itofix32(1);
for(i=0;i<prev_block_len;++i)
*--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
for(i=0;i<n;++i)
*--wptr = 0;
}
}
for(ch = 0; ch < s->nb_channels; ++ch)
{
if (s->channel_coded[ch])
{
static fixed32 output[BLOCK_MAX_SIZE * 2];
fixed32 *ptr;
int i, n4, index, n;
n = s->block_len;
n4 = s->block_len >>1;
//rb->splash(HZ, "in wma_decode_block 4");
ff_imdct_calc(&s->mdct_ctx[bsize],
output,
s->coefs[ch],
s->mdct_tmp);
/* XXX: optimize all that by build the window and
multipying/adding at the same time */
/* multiply by the window */
//already broken here!
for(i=0;i<n * 2;++i)
{
output[i] = fixmul32(output[i], window[i]);
//output[i] *= window[i];
}
/* add in the frame */
index = (s->frame_len / 2) + s->block_pos - n4;
ptr = &s->frame_out[ch][index];
for(i=0;i<n * 2;++i)
{
*ptr += output[i];
++ptr;
}
/* specific fast case for ms-stereo : add to second
channel if it is not coded */
if (s->ms_stereo && !s->channel_coded[1])
{
ptr = &s->frame_out[1][index];
for(i=0;i<n * 2;++i)
{
*ptr += output[i];
++ptr;
}
}
}
}
next:
/* update block number */
++s->block_num;
s->block_pos += s->block_len;
if (s->block_pos >= s->frame_len)
{
return 1;
}
else
{
return 0;
}
}
/* decode a frame of frame_len samples */
static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
{
int ret, i, n, a, ch, incr;
int16_t *ptr;
fixed32 *iptr;
// rb->splash(HZ, "in wma_decode_frame");
/* read each block */
s->block_num = 0;
s->block_pos = 0;
for(;;)
{
ret = wma_decode_block(s);
if (ret < 0)
{
LOGF("wma_decode_block: %d",ret);
//rb->splash(HZ*4, "wma_decode_block failed with ret %d", ret);
return -1;
}
if (ret)
{
break;
}
}
/* convert frame to integer */
n = s->frame_len;
incr = s->nb_channels;
for(ch = 0; ch < s->nb_channels; ++ch)
{
ptr = samples + ch;
iptr = s->frame_out[ch];
for (i=0;i<n;++i)
{
a = fixtoi32(*iptr++)<<1; //ugly but good enough for now
if (a > 32767)
{
a = 32767;
}
else if (a < -32768)
{
a = -32768;
}
*ptr = a;
ptr += incr;
}
/* prepare for next block */
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
s->frame_len * sizeof(fixed32));
/* XXX: suppress this */
memset(&s->frame_out[ch][s->frame_len], 0,
s->frame_len * sizeof(fixed32));
}
return 0;
}
int wma_decode_superframe(WMADecodeContext* s,
void *data,
int *data_size,
uint8_t *buf,
int buf_size)
{
//WMADecodeContext *s = avctx->priv_data;
int nb_frames, bit_offset, i, pos, len;
uint8_t *q;
int16_t *samples;
if (buf_size==0)
{
s->last_superframe_len = 0;
return 0;
}
samples = data;
init_get_bits(&s->gb, buf, buf_size*8);
if (s->use_bit_reservoir)
{
/* read super frame header */
get_bits(&s->gb, 4); /* super frame index */
nb_frames = get_bits(&s->gb, 4) - 1;
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
if (s->last_superframe_len > 0)
{
/* add bit_offset bits to last frame */
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
MAX_CODED_SUPERFRAME_SIZE)
{
goto fail;
}
q = s->last_superframe + s->last_superframe_len;
len = bit_offset;
while (len > 0)
{
*q++ = (get_bits)(&s->gb, 8);
len -= 8;
}
if (len > 0)
{
*q++ = (get_bits)(&s->gb, len) << (8 - len);
}
/* XXX: bit_offset bits into last frame */
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
/* skip unused bits */
if (s->last_bitoffset > 0)
skip_bits(&s->gb, s->last_bitoffset);
/* this frame is stored in the last superframe and in the
current one */
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
/* read each frame starting from bit_offset */
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
len = pos & 7;
if (len > 0)
skip_bits(&s->gb, len);
s->reset_block_lengths = 1;
for(i=0;i<nb_frames;++i)
{
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
/* we copy the end of the frame in the last frame buffer */
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
s->last_bitoffset = pos & 7;
pos >>= 3;
len = buf_size - pos;
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
{
goto fail;
}
s->last_superframe_len = len;
memcpy(s->last_superframe, buf + pos, len);
}
else
{
/* single frame decode */
if (wma_decode_frame(s, samples) < 0)
{
goto fail;
}
samples += s->nb_channels * s->frame_len;
}
*data_size = (int8_t *)samples - (int8_t *)data;
return s->block_align;
fail:
/* when error, we reset the bit reservoir */
s->last_superframe_len = 0;
return -1;
}
/*void free_vlc(VLC *vlc)
{
//av_free(vlc->table);
}
*/
int wma_decode_end(WMADecodeContext *s)
{
(void)s;
/* WMADecodeContext *s = avctx->priv_data;
int i;
for(i = 0; i < s->nb_block_sizes; ++i)
ff_mdct_end(&s->mdct_ctx[i]);
// for(i = 0; i < s->nb_block_sizes; ++i) //now statically allocated
// av_free(s->windows[i]);
if (s->use_exp_vlc)
{
free_vlc(&s->exp_vlc);
}
if (s->use_noise_coding)
{
free_vlc(&s->hgain_vlc);
}
for(i = 0;i < 2; ++i)
{
// free_vlc(&s->coef_vlc[i]);
// av_free(s->run_table[i]);
// av_free(s->level_table[i]);
}
*/
return 0;
}