blob: b5de670c0dac6cdde2c429a55a7f07b51ba5c1b5 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 Linus Nielsen Feltzing
* Copyright (C) 2006 Antonius Hellmann
* Copyright (C) 2006-2013 Michael Sevakis
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "panic.h"
#include "string-extra.h"
#include "pcm_record.h"
#include "codecs.h"
#include "logf.h"
#include "thread.h"
#include "storage.h"
#include "general.h"
#include "codec_thread.h"
#include "audio.h"
#include "sound.h"
#include "metadata.h"
#include "appevents.h"
#ifdef HAVE_SPDIF_IN
#include "spdif.h"
#endif
#include "audio_thread.h"
#include "core_alloc.h"
#include "talk.h"
/* Macros to enable logf for queues
logging on SYS_TIMEOUT can be disabled */
#ifdef SIMULATOR
/* Define this for logf output of all queuing except SYS_TIMEOUT */
#define PCMREC_LOGQUEUES
/* Define this to logf SYS_TIMEOUT messages */
/*#define PCMREC_LOGQUEUES_SYS_TIMEOUT*/
#endif /* SIMULATOR */
#ifdef PCMREC_LOGQUEUES
#define LOGFQUEUE logf
#else
#define LOGFQUEUE(...)
#endif
#ifdef PCMREC_LOGQUEUES_SYS_TIMEOUT
#define LOGFQUEUE_SYS_TIMEOUT logf
#else
#define LOGFQUEUE_SYS_TIMEOUT(...)
#endif
/** Target-related configuration **/
/**
* PCM_NUM_CHUNKS: Number of PCM chunks
* PCM_CHUNK_SAMP: Number of samples in a PCM chunk
* PCM_BOOST_SECONDS: PCM level at which to boost CPU
* PANIC_SECONDS: Flood watermark time until full
* FLUSH_SECONDS: Flush watermark time until full
* STREAM_BUF_SIZE: Size of stream write buffer
* PRIO_SECONDS: Max flush time before prio boost
*
* Total PCM buffer size should be mem aligned
*
* Fractions should be left without parentheses so the multiplier is
* multiplied by the numerator first.
*/
#if MEMORYSIZE <= 2
#define PCM_NUM_CHUNKS 56
#define PCM_CHUNK_SAMP 1024
#define PCM_BOOST_SECONDS 1/2
#define PANIC_SECONDS 1/2
#define FLUSH_SECONDS 1
#define FLUSH_MON_INTERVAL 1/6
#define STREAM_BUF_SIZE 32768
#elif MEMORYSIZE <= 16
#define PANIC_SECONDS 5
#define FLUSH_SECONDS 7
#else /* MEMORYSIZE > 16 */
#define PANIC_SECONDS 8
#define FLUSH_SECONDS 10
#endif /* MEMORYSIZE */
/* Default values if not overridden above */
#ifndef PCM_NUM_CHUNKS
#define PCM_NUM_CHUNKS 256
#endif
#ifndef PCM_CHUNK_SAMP
#define PCM_CHUNK_SAMP 2048
#endif
#ifndef PCM_BOOST_SECONDS
#define PCM_BOOST_SECONDS 1
#endif
#ifndef FLUSH_MON_INTERVAL
#define FLUSH_MON_INTERVAL 1/4
#endif
#ifndef STREAM_BUF_SIZE
#define STREAM_BUF_SIZE 65536
#endif
#ifndef PRIO_SECONDS
#define PRIO_SECONDS 10
#endif
/* FAT limit for filesize. Recording will accept no further data from the
* codec if this limit is reached in order to preserve its own data
* integrity. A split should have made by the higher-ups long before this
* point.
*
* Leave a generous 64k margin for metadata being added to file. */
#define MAX_NUM_REC_BYTES ((size_t)0x7fff0000u)
/***************************************************************************/
extern struct codec_api ci; /* in codec_thread.c */
extern struct event_queue audio_queue; /* in audio_thread.c */
extern unsigned int audio_thread_id; /* in audio_thread.c */
/** General recording state **/
/* Recording action being performed */
static enum record_status
{
RECORD_STOPPED = 0,
RECORD_PRERECORDING = AUDIO_STATUS_PRERECORD,
RECORD_RECORDING = AUDIO_STATUS_RECORD,
RECORD_PAUSED = (AUDIO_STATUS_RECORD | AUDIO_STATUS_PAUSE),
} record_status = RECORD_STOPPED;
/* State of engine operations */
static enum record_state
{
REC_STATE_IDLE, /* Stopped or prerecording */
REC_STATE_MONITOR, /* Monitoring buffer status */
REC_STATE_FLUSH, /* Flushing buffer */
} record_state = REC_STATE_IDLE;
static uint32_t errors; /* An error has occured (bitmask) */
static uint32_t warnings; /* Non-fatal warnings (bitmask) */
static uint32_t rec_errors; /* Mirror of errors but private to
* avoid race with controlling
* thread. Engine uses this
* internally. */
/** Stats on encoded data for current file **/
static int rec_fd = -1; /* Currently open file descriptor */
static size_t num_rec_bytes; /* Number of bytes recorded */
static uint64_t num_rec_samples; /* Number of PCM samples recorded */
static uint64_t encbuf_rec_count; /* Count of slots written to buffer
for current file */
/** These apply to current settings **/
static int rec_source; /* Current rec_source setting */
static unsigned long sample_rate; /* Samplerate setting in HZ */
static int num_channels; /* Current number of channels */
static struct encoder_config enc_config; /* Current encoder configuration */
static unsigned int pre_record_seconds; /* Pre-record time in seconds */
/****************************************************************************
Use 2 circular buffers:
pcm_buffer=DMA output buffer: chunks (8192 Bytes) of raw pcm audio data
enc_buffer=encoded audio buffer: storage for encoder output data
Flow:
1. When entering recording_screen DMA feeds the ringbuffer pcm_buffer
2. If enough pcm data are available the encoder codec does encoding of pcm
chunks (4-8192 Bytes) into ringbuffer enc_buffer in codec_thread
3. pcmrec_callback detects enc_buffer 'near full' and writes data to disk
Functions calls (basic encoder steps):
1.audio: codec_load(); load the encoder
2.encoder: enc_init_parameters(); set the encoder parameters (at load)
3.audio: enc_callback(); configure encoder recording settings
4.audio: codec_go(); start encoding the new stream
5.encoder: enc_encbuf_get_buffer(); obtain an output buffer of size n
6.encoder: enc_pcmbuf_read(); read n bytes of unprocessed pcm data
7.encoder: enc_encbuf_finish_buffer(); add the obtained buffer to output
8.encoder: enc_pcmbuf_advance(); advance pcm by n samples
9.encoder: while more PCM available, repeat 5. to 9.
10.audio: codec_finish_stream(); finish the output for current stream
Function calls (basic stream flushing steps through enc_callback()):
1.audio: flush_stream_start(); stream flush destination is opening
2.audio: flush_stream_data(); flush encoded audio to stream
3.audio: while encoded data available, repeat 2.
4.audio: flush_stream_end(); stream flush destination is closing
****************************************************************************/
/** Buffer parameters where incoming PCM data is placed **/
#define PCM_DEPTH_BYTES (sizeof (int16_t))
#define PCM_SAMP_SIZE (2*PCM_DEPTH_BYTES)
#define PCM_CHUNK_SIZE (PCM_CHUNK_SAMP*PCM_SAMP_SIZE)
#define PCM_BUF_SIZE (PCM_NUM_CHUNKS*PCM_CHUNK_SIZE)
/* Convert byte sizes into buffer slot counts */
#define CHUNK_SIZE_COUNT(size) \
(((size) + ENC_HDR_SIZE - 1) / ENC_HDR_SIZE)
#define CHUNK_FILE_COUNT(size) \
({ typeof (size) __size = (size); \
CHUNK_SIZE_COUNT(MIN(__size, MAX_PATH) + ENC_HDR_SIZE); })
#define CHUNK_FILE_COUNT_PATH(path) \
CHUNK_FILE_COUNT(strlen(path) + 1)
#define CHUNK_DATA_COUNT(size) \
CHUNK_SIZE_COUNT((size) + sizeof (struct enc_chunk_data))
/* Min margin to write stream split headers without overwrap risk */
#define ENCBUF_MIN_SPLIT_MARGIN \
(2*(1 + CHUNK_FILE_COUNT(MAX_PATH)) - 1)
static void *rec_buffer; /* Root rec buffer pointer */
static size_t rec_buffer_size; /* Root rec buffer size */
static void *pcm_buffer; /* Circular buffer for PCM samples */
static volatile bool pcm_pause; /* Freeze DMA write position */
static volatile size_t pcm_widx; /* Current DMA write position */
static volatile size_t pcm_ridx; /* Current PCM read position */
static union enc_chunk_hdr *enc_buffer; /* Circular encoding buffer */
static size_t enc_widx; /* Encoder chunk write index */
static size_t enc_ridx; /* Encoder chunk read index */
static size_t enc_buflen; /* Length of buffer in slots */
static unsigned char *stream_buffer; /* Stream-to-disk write buffer */
static ssize_t stream_buf_used; /* Stream write buffer occupancy */
static struct enc_chunk_file *fname_buf;/* Buffer with next file to create */
static unsigned long enc_sample_rate; /* Samplerate used by encoder */
static bool pcm_buffer_empty; /* All PCM chunks processed? */
static typeof (memcpy) *pcm_copyfn; /* PCM memcpy or copy_buffer_mono */
static enc_callback_t enc_cb; /* Encoder's recording callback */
/** File flushing **/
static unsigned long encbuf_datarate; /* Rate of data per second */
#if (CONFIG_STORAGE & STORAGE_ATA)
static int spinup_time; /* Last spinup time */
#endif
static size_t high_watermark; /* Max limit for data flush */
#ifdef HAVE_PRIORITY_SCHEDULING
static size_t flood_watermark; /* Max limit for thread prio boost */
static bool prio_boosted;
#endif
/** Stream marking **/
enum mark_stream_action
{
MARK_STREAM_END = 0x1, /* Mark end current stream */
MARK_STREAM_START = 0x2, /* Mark start of new stream */
MARK_STREAM_SPLIT = 0x3, /* Insert split; orr of above values */
MARK_STREAM_PRE = 0x4, /* Do prerecord data tally */
MARK_STREAM_START_PRE = MARK_STREAM_PRE | MARK_STREAM_START,
};
/***************************************************************************/
/* Buffer pointer (p) to PCM sample memory address */
static inline void * pcmbuf_ptr(size_t p)
{
return pcm_buffer + p;
}
/* Buffer pointer (p) plus value (v), wrapped if necessary */
static size_t pcmbuf_add(size_t p, size_t v)
{
size_t res = p + v;
if (res >= PCM_BUF_SIZE)
res -= PCM_BUF_SIZE;
return res;
}
/* Size of data in PCM buffer */
size_t pcmbuf_used(void)
{
size_t p1 = pcm_ridx;
size_t p2 = pcm_widx;
if (p1 > p2)
p2 += PCM_BUF_SIZE;
return p2 - p1;
}
/* Buffer pointer (p) to memory address of header */
static inline union enc_chunk_hdr * encbuf_ptr(size_t p)
{
return enc_buffer + p;
}
/* Buffer pointer (p) plus value (v), wrapped if necessary */
static size_t encbuf_add(size_t p, size_t v)
{
size_t res = p + v;
if (res >= enc_buflen)
res -= enc_buflen;
return res;
}
/* Number of free buffer slots */
static size_t encbuf_free(void)
{
size_t p1 = enc_ridx;
size_t p2 = enc_widx;
if (p2 >= p1)
p1 += enc_buflen;
return p1 - p2;
}
/* Number of used buffer slots */
static size_t encbuf_used(void)
{
size_t p1 = enc_ridx;
size_t p2 = enc_widx;
if (p1 > p2)
p2 += enc_buflen;
return p2 - p1;
}
/* Is the encoder buffer empty? */
static bool encbuf_empty(void)
{
return enc_ridx == enc_widx;
}
/* Buffer pointer (p) plus size (v), written to enc_widx, new widx
* zero-initialized */
static void encbuf_widx_advance(size_t widx, size_t v)
{
widx = encbuf_add(widx, v);
encbuf_ptr(widx)->zero = 0;
enc_widx = widx;
}
/* Buffer pointer (p) plus size of chunk at (p), wrapped to (0) if
* necessary.
*
* pout points to variable to receive increment result
*
* Returns NULL if it was a wrap marker */
static void * encbuf_read_ptr_incr(size_t p, size_t *pout)
{
union enc_chunk_hdr *hdr = encbuf_ptr(p);
size_t v;
switch (hdr->type)
{
case CHUNK_T_DATA:
v = CHUNK_DATA_COUNT(hdr->size);
break;
case CHUNK_T_STREAM_START:
v = hdr->size;
break;
case CHUNK_T_STREAM_END:
default:
v = 1;
break;
case CHUNK_T_WRAP:
/* Wrap markers are not returned but caller may have to know that
the index was changed since it impacts available space */
*pout = 0;
return NULL;
}
*pout = encbuf_add(p, v);
return hdr;
}
/* Buffer pointer (p) of contiguous free space (v), wrapped to (0) if
* necessary.
*
* pout points to variable to receive possible-adjusted p
*
* Returns header at (p) or wrapped header at (0) if wrap was
* required in order to provide contiguous space. Header is zero-
* initialized.
*
* Marks the wrap point if a wrap is required to make the allocation. */
static void * encbuf_get_write_ptr(size_t p, size_t v, size_t *pout)
{
union enc_chunk_hdr *hdr = encbuf_ptr(p);
if (p + v > enc_buflen)
{
hdr->type = CHUNK_T_WRAP; /* All other fields ignored */
p = 0;
hdr = encbuf_ptr(0);
}
*pout = p;
hdr->zero = 0;
return hdr;
}
/* Post a flush request to audio thread, if none is currently queued */
static void encbuf_request_flush(void)
{
if (!queue_peek_ex(&audio_queue, NULL, 0,
&(const long [2]){ Q_AUDIO_RECORD_FLUSH,
Q_AUDIO_RECORD_FLUSH }))
queue_post(&audio_queue, Q_AUDIO_RECORD_FLUSH, 0);
}
/* Set the error bits in (e): no lock */
static inline void set_error_bits(uint32_t e)
{
errors |= e;
rec_errors |= e;
}
/* Clear the error bits in (e): no lock */
static inline void clear_error_bits(uint32_t e)
{
errors &= ~e;
}
/* Set the error bits in (e) */
static void raise_error_status(uint32_t e)
{
pcm_rec_lock();
set_error_bits(e);
pcm_rec_unlock();
}
/* Clear the error bits in (e) */
static void clear_error_status(uint32_t e)
{
pcm_rec_lock();
clear_error_bits(e);
pcm_rec_unlock();
}
/* Set the warning bits in (w): no lock */
static inline void set_warning_bits(uint32_t w)
{
warnings |= w;
}
/* Clear the warning bits in (w): no lock */
static inline void clear_warning_bits(uint32_t w)
{
warnings &= ~w;
}
/* Set the warning bits in (w) */
static void raise_warning_status(uint32_t w)
{
pcm_rec_lock();
set_warning_bits(w);
pcm_rec_unlock();
}
/* Clear the warning bits in (w) */
static void clear_warning_status(uint32_t w)
{
pcm_rec_lock();
clear_warning_bits(w);
pcm_rec_unlock();
}
/* Callback for when more data is ready - called by DMA ISR */
static void pcm_rec_have_more(void **start, size_t *size)
{
size_t next_idx = pcm_widx;
if (!pcm_pause)
{
/* One empty chunk must remain after widx is advanced */
if (pcmbuf_used() <= PCM_BUF_SIZE - 2*PCM_CHUNK_SIZE)
next_idx = pcmbuf_add(next_idx, PCM_CHUNK_SIZE);
else
set_warning_bits(PCMREC_W_PCM_BUFFER_OVF);
}
*start = pcmbuf_ptr(next_idx);
*size = PCM_CHUNK_SIZE;
pcm_widx = next_idx;
}
static enum pcm_dma_status pcm_rec_status_callback(enum pcm_dma_status status)
{
if (status < PCM_DMAST_OK)
{
/* Some error condition */
if (status == PCM_DMAST_ERR_DMA)
{
set_error_bits(PCMREC_E_DMA);
return status;
}
else
{
/* Try again next transmission - frame is invalid */
set_warning_bits(PCMREC_W_DMA);
}
}
return PCM_DMAST_OK;
}
/* Start DMA transfer */
static void pcm_start_recording(void)
{
pcm_record_data(pcm_rec_have_more, pcm_rec_status_callback,
pcmbuf_ptr(pcm_widx), PCM_CHUNK_SIZE);
}
/* Initialize the various recording buffers */
static void init_rec_buffers(void)
{
/* Layout of recording buffer: |PCMBUF|STREAMBUF|FILENAME|ENCBUF| */
void *buf = rec_buffer;
size_t size = rec_buffer_size;
/* PCMBUF */
pcm_buffer = CACHEALIGN_UP(buf); /* Line align */
size -= pcm_buffer + PCM_BUF_SIZE - buf;
buf = pcm_buffer + PCM_BUF_SIZE;
/* STREAMBUF */
stream_buffer = buf; /* Also line-aligned */
buf += STREAM_BUF_SIZE;
size -= STREAM_BUF_SIZE;
/* FILENAME */
fname_buf = buf;
buf += CHUNK_FILE_COUNT(MAX_PATH)*ENC_HDR_SIZE;
size -= CHUNK_FILE_COUNT(MAX_PATH)*ENC_HDR_SIZE;
fname_buf->hdr.zero = 0;
/* ENCBUF */
enc_buffer = buf;
enc_buflen = size;
ALIGN_BUFFER(enc_buffer, enc_buflen, ENC_HDR_SIZE);
enc_buflen = CHUNK_SIZE_COUNT(enc_buflen);
}
/* Reset the circular buffers */
static void reset_fifos(bool hard)
{
/* PCM FIFO */
pcm_pause = true;
if (hard)
pcm_widx = 0; /* Don't just empty but reset it */
pcm_ridx = pcm_widx;
/* Encoder FIFO */
encbuf_widx_advance(0, 0);
enc_ridx = 0;
/* No overflow-related warnings now */
clear_warning_status(PCMREC_W_PCM_BUFFER_OVF | PCMREC_W_ENC_BUFFER_OVF);
}
/* Initialize file statistics */
static void reset_rec_stats(void)
{
num_rec_bytes = 0;
num_rec_samples = 0;
encbuf_rec_count = 0;
clear_warning_status(PCMREC_W_FILE_SIZE);
}
/* Boost or unboost recording threads' priorities */
static void do_prio_boost(bool boost)
{
#ifdef HAVE_PRIORITY_SCHEDULING
prio_boosted = boost;
int prio = PRIORITY_RECORDING;
if (boost)
prio -= 4;
codec_thread_set_priority(prio);
thread_set_priority(audio_thread_id, prio);
#endif
(void)boost;
}
/* Reset all relevant state */
static void init_state(void)
{
reset_fifos(true);
reset_rec_stats();
do_prio_boost(false);
cancel_cpu_boost();
record_state = REC_STATE_IDLE;
record_status = RECORD_STOPPED;
}
/* Set hardware samplerate and save it */
static void update_samplerate_config(unsigned long sampr)
{
/* PCM samplerate is either the same as the setting or the nearest
one hardware supports if using S/PDIF */
unsigned long pcm_sampr = sampr;
#ifdef HAVE_SPDIF_IN
if (rec_source == AUDIO_SRC_SPDIF)
{
int index = round_value_to_list32(sampr, hw_freq_sampr,
HW_NUM_FREQ, false);
pcm_sampr = hw_freq_sampr[index];
}
#endif /* HAVE_SPDIF_IN */
pcm_set_frequency(pcm_sampr | SAMPR_TYPE_REC);
sample_rate = sampr;
}
/* Calculate the average data rate */
static unsigned long get_encbuf_datarate(void)
{
/* If not yet calculable, start with uncompressed PCM byterate */
if (num_rec_samples && sample_rate && encbuf_rec_count)
{
return (encbuf_rec_count*sample_rate + num_rec_samples - 1)
/ num_rec_samples;
}
else
{
return CHUNK_SIZE_COUNT(sample_rate*num_channels*PCM_DEPTH_BYTES);
}
}
/* Returns true if the watermarks should be updated due to data rate
change */
static bool monitor_encbuf_datarate(void)
{
unsigned long rate = get_encbuf_datarate();
long diff = rate - encbuf_datarate;
/* Off by more than 1/2 FLUSH_MON_INTERVAL? */
return 2*(unsigned long)abs(diff) > encbuf_datarate*FLUSH_MON_INTERVAL;
}
/* Get adjusted spinup time */
static int get_spinup_time(void)
{
int spin = storage_spinup_time();
#if (CONFIG_STORAGE & STORAGE_ATA)
/* Write at FLUSH_SECONDS + st remaining in enc_buffer - range fs+2s to
fs+10s total - default to 3.5s spinup. */
if (spin == 0)
spin = 35*HZ/10; /* default - cozy */
else if (spin < 2*HZ)
spin = 2*HZ; /* ludicrous - ramdisk? */
else if (spin > 10*HZ)
spin = 10*HZ; /* do you have a functioning HD? */
#endif /* (CONFIG_STORAGE & STORAGE_ATA) */
return spin;
}
/* Returns true if the watermarks should be updated due to spinup time
change */
static inline bool monitor_spinup_time(void)
{
#if (CONFIG_STORAGE & STORAGE_ATA)
return get_spinup_time() != spinup_time;
#else
return false;
#endif
}
/* Update buffer watermarks with spinup time compensation */
static void refresh_watermarks(void)
{
int spin = get_spinup_time();
#if (CONFIG_STORAGE & STORAGE_ATA)
logf("ata spinup: %d", spin);
spinup_time = spin;
#endif
unsigned long rate = get_encbuf_datarate();
logf("byterate: %lu", rate * ENC_HDR_SIZE);
encbuf_datarate = rate;
/* Try to start writing with FLUSH_SECONDS remaining after disk spinup */
high_watermark = (uint64_t)rate*(FLUSH_SECONDS*HZ + spin) / HZ;
if (high_watermark > enc_buflen)
high_watermark = enc_buflen;
high_watermark = enc_buflen - high_watermark;
logf("high wm: %lu", (unsigned long)high_watermark);
#ifdef HAVE_PRIORITY_SCHEDULING
/* Boost thread priority if enough ground is lost since flushing started
or is taking an unreasonably long time */
flood_watermark = rate*PANIC_SECONDS;
if (flood_watermark > enc_buflen)
flood_watermark = enc_buflen;
flood_watermark = enc_buflen - flood_watermark;
logf("flood wm: %lu", (unsigned long)flood_watermark);
#endif /* HAVE_PRIORITY_SCHEDULING */
}
/* Tell encoder the stream parameters and get information back */
static bool configure_encoder_stream(void)
{
struct enc_inputs inputs;
inputs.sample_rate = sample_rate;
inputs.num_channels = num_channels;
inputs.config = &enc_config;
/* encoder can change these - init with defaults */
inputs.enc_sample_rate = sample_rate;
if (enc_cb(ENC_CB_INPUTS, &inputs) < 0)
{
raise_error_status(PCMREC_E_ENC_SETUP);
return false;
}
enc_sample_rate = inputs.enc_sample_rate;
if (enc_sample_rate != sample_rate)
{
/* Codec doesn't want to/can't use the setting and has chosen a
different sample rate */
raise_warning_status(PCMREC_W_SAMPR_MISMATCH);
logf("enc sampr:%lu", enc_sample_rate);
}
else
{
clear_warning_status(PCMREC_W_SAMPR_MISMATCH);
}
refresh_watermarks();
return true;
}
#ifdef HAVE_SPDIF_IN
/* Return the S/PDIF sample rate closest to a value in the master list */
static unsigned long get_spdif_samplerate(void)
{
unsigned long sr = spdif_measure_frequency();
int index = round_value_to_list32(sr, audio_master_sampr_list,
SAMPR_NUM_FREQ, false);
return audio_master_sampr_list[index];
}
/* Check the S/PDIF rate and compare to current setting. Apply the new
* rate if it changed. */
static void check_spdif_samplerate(void)
{
unsigned long sampr = get_spdif_samplerate();
if (sampr == sample_rate)
return;
codec_stop();
pcm_stop_recording();
reset_fifos(true);
reset_rec_stats();
update_samplerate_config(sampr);
pcm_apply_settings();
if (!configure_encoder_stream() || rec_errors)
return;
pcm_start_recording();
if (record_status == RECORD_PRERECORDING)
{
codec_go();
pcm_pause = false;
}
}
#endif /* HAVE_SPDIF_IN */
/* Discard the stream buffer contents */
static inline void stream_discard_buf(void)
{
stream_buf_used = 0;
}
/* Flush stream buffer to disk */
static bool stream_flush_buf(void)
{
if (stream_buf_used == 0)
return true;
ssize_t rc = write(rec_fd, stream_buffer, stream_buf_used);
if (LIKELY(rc == stream_buf_used))
{
stream_discard_buf();
return true;
}
if (rc > 0)
{
/* Some was written; keep in sync */
stream_buf_used -= rc;
memmove(stream_buffer, stream_buffer + rc, stream_buf_used);
}
return false;
}
/* Close the output file */
static void close_rec_file(void)
{
if (rec_fd < 0)
return;
bool ok = stream_flush_buf();
if (close(rec_fd) != 0 || !ok)
raise_error_status(PCMREC_E_IO);
rec_fd = -1;
}
/* Creates or opens the current path */
static bool open_rec_file(bool create)
{
if (rec_fd >= 0)
{
/* Any previous file should have been closed */
logf("open file: file already open");
close_rec_file();
}
stream_discard_buf();
int oflags = create ? O_CREAT|O_TRUNC : 0;
rec_fd = open(fname_buf->path, O_RDWR|oflags, 0666);
if (rec_fd < 0)
{
raise_error_status(PCMREC_E_IO);
return false;
}
return true;
}
/* Copy with mono conversion - output 1/2 size of input */
static void * ICODE_ATTR
copy_buffer_mono_lr(void *dst, const void *src, size_t src_size)
{
int16_t *d = dst;
int16_t const *s = src;
/* mono = (L + R) / 2 */
do
*d++ = ((int32_t){ *s++ } + *s++ + 1) >> 1;
while (src_size -= PCM_SAMP_SIZE);
return dst;
}
/* Copy with mono conversion - output 1/2 size of input */
static void * ICODE_ATTR
copy_buffer_mono_l(void *dst, const void *src, size_t src_size)
{
int16_t *d = dst;
int16_t const *s = (int16_t *)src - 2;
/* mono = L */
do
*d++ = *(s += 2);
while (src_size -= PCM_SAMP_SIZE);
return dst;
}
/* Copy with mono conversion - output 1/2 size of input */
static void * ICODE_ATTR
copy_buffer_mono_r(void *dst, const void *src, size_t src_size)
{
int16_t *d = dst;
int16_t const *s = (int16_t *)src - 1;
/* mono = R */
do
*d++ = *(s += 2);
while (src_size -= PCM_SAMP_SIZE);
return dst;
}
/** pcm_rec_* group **/
/* Clear all errors and warnings */
void pcm_rec_error_clear(void)
{
clear_error_status(PCMREC_E_ALL);
clear_warning_status(PCMREC_W_ALL);
}
/* Check mode, errors and warnings */
unsigned int pcm_rec_status(void)
{
unsigned int ret = record_status;
if (errors)
ret |= AUDIO_STATUS_ERROR;
if (warnings)
ret |= AUDIO_STATUS_WARNING;
return ret;
}
/* Return warnings that have occured since recording started */
uint32_t pcm_rec_get_warnings(void)
{
return warnings;
}
#ifdef HAVE_SPDIF_IN
/* Return the currently-configured sample rate */
unsigned long pcm_rec_sample_rate(void)
{
return sample_rate;
}
#endif
/** audio_* group **/
/* Initializes recording - call before calling any other recording function */
void audio_init_recording(void)
{
LOGFQUEUE("audio >| pcmrec Q_AUDIO_INIT_RECORDING");
audio_queue_send(Q_AUDIO_INIT_RECORDING, 1);
}
/* Closes recording - call audio_stop_recording first or risk data loss */
void audio_close_recording(void)
{
LOGFQUEUE("audio >| pcmrec Q_AUDIO_CLOSE_RECORDING");
audio_queue_send(Q_AUDIO_CLOSE_RECORDING, 0);
}
/* Sets recording parameters */
void audio_set_recording_options(struct audio_recording_options *options)
{
LOGFQUEUE("audio >| pcmrec Q_AUDIO_RECORDING_OPTIONS");
audio_queue_send(Q_AUDIO_RECORDING_OPTIONS, (intptr_t)options);
}
/* Start recording if not recording or else split */
void audio_record(const char *filename)
{
LOGFQUEUE("audio >| pcmrec Q_AUDIO_RECORD: %s", filename);
audio_queue_send(Q_AUDIO_RECORD, (intptr_t)filename);
}
/* audio_record alias for API compatibility with HW codec */
void audio_new_file(const char *filename)
__attribute__((alias("audio_record")));
/* Stop current recording if recording */
void audio_stop_recording(void)
{
LOGFQUEUE("audio > pcmrec Q_AUDIO_RECORD_STOP");
audio_queue_post(Q_AUDIO_RECORD_STOP, 0);
}
/* Pause current recording */
void audio_pause_recording(void)
{
LOGFQUEUE("audio > pcmrec Q_AUDIO_RECORD_PAUSE");
audio_queue_post(Q_AUDIO_RECORD_PAUSE, 0);
}
/* Resume current recording if paused */
void audio_resume_recording(void)
{
LOGFQUEUE("audio > pcmrec Q_AUDIO_RECORD_RESUME");
audio_queue_post(Q_AUDIO_RECORD_RESUME, 0);
}
/* Set the input source gain. For mono sources, only left gain is used */
void audio_set_recording_gain(int left, int right, int type)
{
#if 0
logf("pcmrec: t=%d l=%d r=%d", type, left, right);
#endif
audiohw_set_recvol(left, right, type);
}
/** Information about current state **/
/* Return sample clock in HZ */
static unsigned long get_samples_time(void)
{
if (enc_sample_rate == 0)
return 0;
return (unsigned long)(HZ*num_rec_samples / enc_sample_rate);
}
/* Return current prerecorded time in ticks (playback equivalent time) */
unsigned long audio_prerecorded_time(void)
{
if (record_status != RECORD_PRERECORDING)
return 0;
unsigned long t = get_samples_time();
return MIN(t, pre_record_seconds*HZ);
}
/* Return current recorded time in ticks (playback equivalent time) */
unsigned long audio_recorded_time(void)
{
if (record_state == REC_STATE_IDLE)
return 0;
return get_samples_time();
}
/* Return number of bytes encoded to output */
unsigned long audio_num_recorded_bytes(void)
{
if (record_state == REC_STATE_IDLE)
return 0;
return num_rec_bytes;
}
/** Data Flushing **/
/* Stream start chunk with path was encountered */
static void flush_stream_start(struct enc_chunk_file *file)
{
/* Save filename; don't open file here which avoids creating files
with no audio content. Splitting while paused can create those
in large numbers. */
fname_buf->hdr = file->hdr;
/* Correct size if this was wrap-padded */
fname_buf->hdr.size = CHUNK_FILE_COUNT(
strlcpy(fname_buf->path, file->path, MAX_PATH) + 1);
}
/* Data chunk was encountered */
static bool flush_stream_data(struct enc_chunk_data *data)
{
if (fname_buf->hdr.zero)
{
/* First data chunk; create the file */
if (open_rec_file(true))
{
/* Inherit some flags from initial data chunk */
fname_buf->hdr.err = data->hdr.err;
fname_buf->hdr.pre = data->hdr.pre;
fname_buf->hdr.aux0 = data->hdr.aux0;
if (enc_cb(ENC_CB_STREAM, fname_buf) < 0)
raise_error_status(PCMREC_E_ENCODER_STREAM);
}
fname_buf->hdr.zero = 0;
if (rec_errors)
return false;
}
if (rec_fd < 0)
return true; /* Just keep discarding */
if (enc_cb(ENC_CB_STREAM, data) < 0)
{
raise_error_status(PCMREC_E_ENCODER_STREAM);
return false;
}
return true;
}
/* Stream end chunk was encountered */
static bool flush_stream_end(union enc_chunk_hdr *hdr)
{
if (rec_fd < 0)
return true;
if (enc_cb(ENC_CB_STREAM, hdr) < 0)
{
raise_error_status(PCMREC_E_ENCODER_STREAM);
return false;
}
close_rec_file();
return true;
}
/* Discard remainder of stream in encoder buffer */
static void discard_stream(void)
{
/* Discard everything up until the next non-data chunk */
while (!encbuf_empty())
{
size_t ridx;
union enc_chunk_hdr *hdr = encbuf_read_ptr_incr(enc_ridx, &ridx);
if (hdr && hdr->type != CHUNK_T_DATA)
{
if (hdr->type != CHUNK_T_STREAM_START)
enc_ridx = ridx;
break;
}
enc_ridx = ridx;
}
/* Try to finish header by closing and reopening the file. A seek or
other operation will likely fail because buffers will need to be
flushed (here and in file code). That will likely fail but a close
will just close the fd and discard everything. We reopen with what
actually made it to disk. Modifying existing file contents will
more than likely succeed even on a full disk. The result might not
be entirely correct as far as the headers' sizes and counts unless
the codec can correct that but the sample format information
should be. */
if (rec_fd >= 0 && open_rec_file(false))
{
/* Synthesize a special end chunk here */
union enc_chunk_hdr end;
end.zero = 0;
end.err = 1; /* Codec should try to correct anything that's off */
end.type = CHUNK_T_STREAM_END;
if (!flush_stream_end(&end))
close_rec_file();
}
}
/* Flush a chunk to disk
*
* Transitions state from REC_STATE_MONITOR to REC_STATE_FLUSH when buffer
* is filling. 'margin' is fullness threshold that transitions to flush state.
*
* Call with REC_STATE_IDLE to indicate a forced flush which flushes buffer
* to less than 'margin'.
*/
static enum record_state flush_chunk(enum record_state state, size_t margin)
{
#ifdef HAVE_PRIORITY_SCHEDULING
static unsigned long prio_tick; /* Timeout for auto boost */
#endif
size_t used = encbuf_used();
switch (state)
{
case REC_STATE_MONITOR:
if (monitor_encbuf_datarate() || monitor_spinup_time())
refresh_watermarks();
if (used < margin)
return REC_STATE_MONITOR;
state = REC_STATE_FLUSH;
trigger_cpu_boost();
#ifdef HAVE_PRIORITY_SCHEDULING
prio_tick = current_tick + PRIO_SECONDS*HZ;
#if (CONFIG_STORAGE & STORAGE_ATA)
prio_tick += spinup_time;
#endif
#endif /* HAVE_PRIORITY_SCHEDULING */
/* Fall-through */
case REC_STATE_IDLE: /* As a hint for "forced" */
if (used < margin)
break;
/* Fall-through */
case REC_STATE_FLUSH:
#ifdef HAVE_PRIORITY_SCHEDULING
if (!prio_boosted && state != REC_STATE_IDLE &&
(used >= flood_watermark || TIME_AFTER(current_tick, prio_tick)))
do_prio_boost(true);
#endif /* HAVE_PRIORITY_SCHEDULING */
while (used)
{
union enc_chunk_hdr *hdr = encbuf_ptr(enc_ridx);
size_t count = 0;
switch (hdr->type)
{
case CHUNK_T_DATA:
if (flush_stream_data(ENC_DATA_HDR(hdr)))
count = CHUNK_DATA_COUNT(hdr->size);
break;
case CHUNK_T_STREAM_START:
/* Doesn't do stream writes */
flush_stream_start(ENC_FILE_HDR(hdr));
count = hdr->size;
break;
case CHUNK_T_STREAM_END:
if (flush_stream_end(hdr))
count = 1;
break;
case CHUNK_T_WRAP:
enc_ridx = 0;
used = encbuf_used();
continue;
}
if (count)
enc_ridx = encbuf_add(enc_ridx, count);
else
discard_stream();
break;
}
if (!encbuf_empty())
return state;
break;
}
if (encbuf_empty())
{
do_prio_boost(false);
cancel_cpu_boost();
}
return REC_STATE_MONITOR;
}
/* Monitor buffer and finish stream, freeing-up space at the same time */
static void finish_stream(bool stopping)
{
size_t threshold = stopping ? 1 : enc_buflen - ENCBUF_MIN_SPLIT_MARGIN;
enum record_state state = REC_STATE_MONITOR;
size_t need = 1;
while (1)
{
switch (state)
{
case REC_STATE_IDLE:
state = flush_chunk(state, threshold);
continue;
default:
if (!need)
break;
if (!stopping || pcm_buffer_empty)
{
need = codec_finish_stream();
if (need)
{
need = 2*CHUNK_DATA_COUNT(need) - 1;
if (need >= enc_buflen)
{
need = 0;
codec_stop();
threshold = 1;
}
else if (threshold > enc_buflen - need)
{
threshold = enc_buflen - need;
}
}
}
if (!need || encbuf_used() >= threshold)
state = REC_STATE_IDLE; /* Start flush */
else
sleep(HZ/10); /* Don't flood with pings */
continue;
}
break;
}
}
/* Start a new stream, transistion to a new one or end the current one */
static void mark_stream(const char *path, enum mark_stream_action action)
{
if (action & MARK_STREAM_END)
{
size_t widx;
union enc_chunk_hdr *hdr = encbuf_get_write_ptr(enc_widx, 1, &widx);
hdr->type = CHUNK_T_STREAM_END;
encbuf_widx_advance(widx, 1);
}
if (action & MARK_STREAM_START)
{
size_t count = CHUNK_FILE_COUNT_PATH(path);
struct enc_chunk_file *file;
size_t widx;
if (action & MARK_STREAM_PRE)
{
/* Prerecord: START marker goes first or before existing data */
if (enc_ridx < count)
{
/* Adjust to occupy end of buffer and pad accordingly */
count += enc_ridx;
enc_ridx += enc_buflen;
}
enc_ridx -= count;
/* Won't adjust p since enc_ridx is already set as non-wrapping */
file = encbuf_get_write_ptr(enc_ridx, count, &widx);
}
else
{
/* The usual: START marker goes first or after existing data */
file = encbuf_get_write_ptr(enc_widx, count, &widx);
encbuf_widx_advance(widx, count);
}
file->hdr.type = CHUNK_T_STREAM_START;
file->hdr.size = count;
strlcpy(file->path, path, MAX_PATH);
}
}
/* Tally-up and keep the required amount of prerecord data.
* Updates record stats accordingly. */
static void tally_prerecord_data(void)
{
unsigned long count = 0;
size_t bytes = 0;
unsigned long samples = 0;
/* Find out how much is there */
for (size_t idx = enc_ridx; idx != enc_widx;)
{
struct enc_chunk_data *data = encbuf_read_ptr_incr(idx, &idx);
if (!data)
continue;
count += CHUNK_DATA_COUNT(data->hdr.size);
bytes += data->hdr.size;
samples += data->pcm_count;
}
/* Have too much? Discard oldest data. */
unsigned long pre_samples = enc_sample_rate*pre_record_seconds;
while (samples > pre_samples)
{
struct enc_chunk_data *data =
encbuf_read_ptr_incr(enc_ridx, &enc_ridx);
if (!data)
continue;
count -= CHUNK_DATA_COUNT(data->hdr.size);
bytes -= data->hdr.size;
samples -= data->pcm_count;
}
encbuf_rec_count = count;
num_rec_bytes = bytes;
num_rec_samples = samples;
}
/** Event handlers for recording thread **/
static int pcmrec_handle;
/* Q_AUDIO_INIT_RECORDING */
static void on_init_recording(void)
{
send_event(RECORDING_EVENT_START, NULL);
/* dummy ops with no callbacks, needed because by
* default buflib buffers can be moved around which must be avoided
* FIXME: This buffer should play nicer and be shrinkable/movable */
static struct buflib_callbacks dummy_ops;
talk_buffer_set_policy(TALK_BUFFER_LOOSE);
pcmrec_handle = core_alloc_maximum("pcmrec", &rec_buffer_size, &dummy_ops);
if (pcmrec_handle <= 0)
/* someone is abusing core_alloc_maximum(). Fix this evil guy instead of
* trying to handle OOM without hope */
panicf("%s(): OOM\n", __func__);
rec_buffer = core_get_data(pcmrec_handle);
init_rec_buffers();
init_state();
pcm_init_recording();
}
/* Q_AUDIO_CLOSE_RECORDING */
static void on_close_recording(void)
{
/* Simply shut down the recording system. Whatever wasn't saved is
lost. */
codec_unload();
pcm_close_recording();
close_rec_file();
init_state();
rec_errors = 0;
pcm_rec_error_clear();
/* Reset PCM to defaults */
pcm_set_frequency(HW_SAMPR_RESET | SAMPR_TYPE_REC);
audio_set_output_source(AUDIO_SRC_PLAYBACK);
pcm_apply_settings();
if (pcmrec_handle > 0)
pcmrec_handle = core_free(pcmrec_handle);
talk_buffer_set_policy(TALK_BUFFER_DEFAULT);
send_event(RECORDING_EVENT_STOP, NULL);
}
/* Q_AUDIO_RECORDING_OPTIONS */
static void on_recording_options(struct audio_recording_options *options)
{
if (!options)
{
logf("options: option NULL!");
return;
}
if (record_state != REC_STATE_IDLE)
{
/* This would ruin things */
logf("options: still recording!");
return;
}
/* Stop everything else that might be running */
pcm_stop_recording();
int afmt = rec_format_afmt[options->enc_config.rec_format];
bool enc_load = true;
if (codec_loaded() != AFMT_UNKNOWN)
{
if (get_audio_base_codec_type(enc_config.afmt) !=
get_audio_base_codec_type(afmt))
{
/* New format, new encoder; unload this one */
codec_unload();
}
else
{
/* Keep current encoder */
codec_stop();
enc_load = false;
}
}
init_state();
/* Read recording options, remember the ones used elsewhere */
unsigned frequency = options->rec_frequency;
rec_source = options->rec_source;
num_channels = options->rec_channels == 1 ? 1 : 2;
unsigned mono_mode = options->rec_mono_mode;
pre_record_seconds = options->rec_prerecord_time;
enc_config = options->enc_config;
enc_config.afmt = afmt;
queue_reply(&audio_queue, 0); /* Let caller go */
/* Pick appropriate PCM copy routine */
pcm_copyfn = memcpy;
if (num_channels == 1)
{
static typeof (memcpy) * const copy_buffer_mono[] =
{
copy_buffer_mono_lr,
copy_buffer_mono_l,
copy_buffer_mono_r
};
if (mono_mode >= ARRAYLEN(copy_buffer_mono))
mono_mode = 0;
pcm_copyfn = copy_buffer_mono[mono_mode];
}
/* Get the hardware samplerate to be used */
unsigned long sampr;
#ifdef HAVE_SPDIF_IN
if (rec_source == AUDIO_SRC_SPDIF)
sampr = get_spdif_samplerate(); /* Determined by source */
else
#endif /* HAVE_SPDIF_IN */
sampr = rec_freq_sampr[frequency];
update_samplerate_config(sampr);
/* Set monitoring */
audio_set_output_source(rec_source);
/* Apply hardware setting to start monitoring now */
pcm_apply_settings();
if (!enc_load || codec_load(-1, afmt | CODEC_TYPE_ENCODER))
{
enc_cb = codec_get_enc_callback();
if (!enc_cb || !configure_encoder_stream())
{
codec_unload();
return;
}
if (pre_record_seconds != 0)
{
record_status = RECORD_PRERECORDING;
codec_go();
pcm_pause = false;
}
pcm_start_recording();
}
else
{
logf("set rec opt: enc load failed");
raise_error_status(PCMREC_E_LOAD_ENCODER);
}
}
/* Q_AUDIO_RECORD - start recording (not gapless)
or split stream (gapless) */
static void on_record(const char *filename)
{
if (rec_errors)
{
logf("on_record: errors not cleared");
return;
}
if (!filename)
{
logf("on_record: No filename");
return;
}
if (codec_loaded() == AFMT_UNKNOWN)
{
logf("on_record: Recording options not set");
return;
}
logf("on_record: new file '%s'", filename);
/* Copy path and let caller go */
char path[MAX_PATH];
strlcpy(path, filename, MAX_PATH);
queue_reply(&audio_queue, 0);
enum mark_stream_action mark_action;
if (record_state == REC_STATE_IDLE)
{
mark_action = MARK_STREAM_START;
if (pre_record_seconds)
{
codec_pause();
tally_prerecord_data();
mark_action = MARK_STREAM_START_PRE;
}
clear_warning_status(PCMREC_W_ALL &
~(PCMREC_W_SAMPR_MISMATCH|PCMREC_W_DMA));
record_state = REC_STATE_MONITOR;
record_status = RECORD_RECORDING;
}
else
{
/* Already recording, just split the stream */
logf("inserting split");
mark_action = MARK_STREAM_SPLIT;
finish_stream(false);
reset_rec_stats();
}
if (rec_errors)
{
pcm_pause = true;
codec_stop();
reset_fifos(false);
return;
}
mark_stream(path, mark_action);
codec_go();
pcm_pause = record_status != RECORD_RECORDING;
}
/* Q_AUDIO_RECORD_STOP */
static void on_record_stop(void)
{
if (record_state == REC_STATE_IDLE)
return;
trigger_cpu_boost();
/* Drain encoder and PCM buffers */
pcm_pause = true;
finish_stream(true);
/* End stream at last data and flush end marker */
mark_stream(NULL, MARK_STREAM_END);
while (flush_chunk(REC_STATE_IDLE, 1) == REC_STATE_IDLE);
reset_fifos(false);
bool prerecord = pre_record_seconds != 0;
if (rec_errors)
{
codec_stop();
prerecord = false;
}
close_rec_file();
rec_errors = 0;
record_state = REC_STATE_IDLE;
record_status = prerecord ? RECORD_PRERECORDING : RECORD_STOPPED;
reset_rec_stats();
if (prerecord)
{
codec_go();
pcm_pause = false;
}
}
/* Q_AUDIO_RECORD_PAUSE */
static void on_record_pause(void)
{
if (record_status != RECORD_RECORDING)
return;
pcm_pause = true;
record_status = RECORD_PAUSED;
}
/* Q_AUDIO_RECORD_RESUME */
static void on_record_resume(void)
{
if (record_status != RECORD_PAUSED)
return;
record_status = RECORD_RECORDING;
pcm_pause = !!rec_errors;
}
/* Called by audio thread when recording is initialized */
void audio_recording_handler(struct queue_event *ev)
{
#ifdef HAVE_PRIORITY_SCHEDULING
/* Get current priorities since they get changed */
int old_prio = thread_get_priority(audio_thread_id);
int old_cod_prio = codec_thread_get_priority();
#endif
LOGFQUEUE("record < Q_AUDIO_INIT_RECORDING");
on_init_recording();
while (1)
{
int watermark = high_watermark;
switch (ev->id)
{
case Q_AUDIO_CLOSE_RECORDING:
LOGFQUEUE("record < Q_AUDIO_CLOSE_RECORDING");
goto recording_done;
case Q_AUDIO_RECORDING_OPTIONS:
LOGFQUEUE("record < Q_AUDIO_RECORDING_OPTIONS");
on_recording_options((struct audio_recording_options *)ev->data);
break;
case Q_AUDIO_RECORD:
LOGFQUEUE("record < Q_AUDIO_RECORD: %s", (const char *)ev->data);
on_record((const char *)ev->data);
break;
case Q_AUDIO_RECORD_STOP:
LOGFQUEUE("record < Q_AUDIO_RECORD_STOP");
on_record_stop();
break;
case Q_AUDIO_RECORD_PAUSE:
LOGFQUEUE("record < Q_AUDIO_RECORD_PAUSE");
on_record_pause();
break;
case Q_AUDIO_RECORD_RESUME:
LOGFQUEUE("record < Q_AUDIO_RECORD_RESUME");
on_record_resume();
break;
case Q_AUDIO_RECORD_FLUSH:
watermark = 1;
break;
case SYS_USB_CONNECTED:
LOGFQUEUE("record < SYS_USB_CONNECTED");
if (record_state != REC_STATE_IDLE)
{
LOGFQUEUE(" still recording");
break;
}
goto recording_done;
} /* switch */
int timeout;
switch (record_state)
{
case REC_STATE_FLUSH:
case REC_STATE_MONITOR:
do
record_state = flush_chunk(record_state, watermark);
while (record_state == REC_STATE_FLUSH &&
queue_empty(&audio_queue));
timeout = record_state == REC_STATE_FLUSH ?
HZ*0 : HZ*FLUSH_MON_INTERVAL;
break;
case REC_STATE_IDLE:
#ifdef HAVE_SPDIF_IN
if (rec_source == AUDIO_SRC_SPDIF)
{
check_spdif_samplerate();
timeout = HZ/2;
break;
}
#endif /* HAVE_SPDIF_IN */
default:
timeout = TIMEOUT_BLOCK;
break;
}
queue_wait_w_tmo(&audio_queue, ev, timeout);
} /* while */
recording_done:
on_close_recording();
#ifdef HAVE_PRIORITY_SCHEDULING
/* Restore normal thread priorities */
thread_set_priority(audio_thread_id, old_prio);
codec_thread_set_priority(old_cod_prio);
#endif
}
/** Encoder callbacks **/
/* Read a block of unprocessed PCM data, with mono conversion if
* num_channels == 1
*
* NOTE: Request must be less than the PCM buffer length in samples in order
* to progress.
* (ie. count <= PCM_NUM_CHUNKS*PCM_CHUNK_SAMP)
*/
static int enc_pcmbuf_read(void *buffer, int count)
{
size_t avail = pcmbuf_used();
size_t size = count*PCM_SAMP_SIZE;
if (count > 0 && avail >= size)
{
size_t endidx = pcm_ridx + size;
if (endidx > PCM_BUF_SIZE)
{
size_t wrap = endidx - PCM_BUF_SIZE;
size_t offset = size -= wrap;
if (num_channels == 1)
offset /= 2; /* src offset -> dst offset */
pcm_copyfn(buffer + offset, pcmbuf_ptr(0), wrap);
}
pcm_copyfn(buffer, pcmbuf_ptr(pcm_ridx), size);
if (avail >= sample_rate*PCM_SAMP_SIZE*PCM_BOOST_SECONDS ||
avail >= PCM_BUF_SIZE*1/2)
{
/* Filling up - boost threshold data available or more or 1/2 full
or more - boost codec */
trigger_cpu_boost();
}
pcm_buffer_empty = false;
return count;
}
/* Not enough data available - encoder should idle */
pcm_buffer_empty = true;
cancel_cpu_boost();
/* Sleep a little bit */
sleep(0);
return 0;
}
/* Advance PCM buffer by count samples */
static int enc_pcmbuf_advance(int count)
{
if (count <= 0)
return 0;
size_t avail = pcmbuf_used();
size_t size = count*PCM_SAMP_SIZE;
if (avail < size)
{
size = avail;
count = size / PCM_SAMP_SIZE;
}
pcm_ridx = pcmbuf_add(pcm_ridx, size);
return count;
}
/* Return encoder chunk at current write position, wrapping to 0 if
* requested size demands it.
*
* NOTE: No request should be more than 1/2 the buffer length, all elements
* included, or progress will not be guaranteed.
* (ie. CHUNK_DATA_COUNT(need) <= enc_buflen / 2)
*/
static struct enc_chunk_data * enc_encbuf_get_buffer(size_t need)
{
/* Convert to buffer slot count, including the header */
need = CHUNK_DATA_COUNT(need);
enum record_state state = record_state;
size_t avail = encbuf_free();
/* Must have the split margin as well but it does not have to be
continuous with the request */
while (avail <= need + ENCBUF_MIN_SPLIT_MARGIN ||
(enc_widx + need > enc_buflen &&
enc_ridx <= need + ENCBUF_MIN_SPLIT_MARGIN))
{
if (UNLIKELY(state == REC_STATE_IDLE))
{
/* Prerecording - delete some old data */
size_t ridx;
struct enc_chunk_data *data =
encbuf_read_ptr_incr(enc_ridx, &ridx);
if (data)
{
encbuf_rec_count -= CHUNK_DATA_COUNT(data->hdr.size);
num_rec_bytes -= data->hdr.size;
num_rec_samples -= data->pcm_count;
}
enc_ridx = ridx;
avail = encbuf_free();
continue;
}
else if (avail == enc_buflen)
{
/* Empty but request larger than any possible space */
raise_warning_status(PCMREC_W_ENC_BUFFER_OVF);
}
else if (state != REC_STATE_FLUSH && encbuf_used() < high_watermark)
{
/* Not yet even at high watermark but what's needed won't fit */
encbuf_request_flush();
}
sleep(0);
return NULL;
}
struct enc_chunk_data *data =
encbuf_get_write_ptr(enc_widx, need, &enc_widx);
if (state == REC_STATE_IDLE)
data->hdr.pre = 1;
return data;
}
/* Releases the current buffer into the available chunks */
static void enc_encbuf_finish_buffer(void)
{
struct enc_chunk_data *data = ENC_DATA_HDR(encbuf_ptr(enc_widx));
if (data->hdr.err)
{
/* Encoder set error flag */
raise_error_status(PCMREC_E_ENCODER);
return;
}
size_t data_size = data->hdr.size;
if (data_size == 0)
return; /* Claims nothing was written */
size_t count = CHUNK_DATA_COUNT(data_size);
size_t avail = encbuf_free();
if (avail <= count || enc_widx + count > enc_buflen)
{
/* Claims it wrote too much? */
raise_warning_status(PCMREC_W_ENC_BUFFER_OVF);
return;
}
if (num_rec_bytes + data_size > MAX_NUM_REC_BYTES)
{
/* Would exceed filesize limit; should have split sooner.
This chunk will be dropped. :'( */
raise_warning_status(PCMREC_W_FILE_SIZE);
return;
}
encbuf_widx_advance(enc_widx, count);
encbuf_rec_count += count;
num_rec_bytes += data_size;
num_rec_samples += data->pcm_count;
}
/* Read from the output stream */
static ssize_t enc_stream_read(void *buf, size_t count)
{
if (!stream_flush_buf())
return -1;
return read(rec_fd, buf, count);
}
/* Seek the output steam */
static off_t enc_stream_lseek(off_t offset, int whence)
{
if (!stream_flush_buf())
return -1;
return lseek(rec_fd, offset, whence);
}
/* Write to the output stream */
static ssize_t enc_stream_write(const void *buf, size_t count)
{
if (UNLIKELY(count >= STREAM_BUF_SIZE))
{
/* Too big to buffer */
if (stream_flush_buf())
return write(rec_fd, buf, count);
}
if (!count)
return 0;
if (stream_buf_used + count > STREAM_BUF_SIZE)
{
if (!stream_flush_buf() && stream_buf_used + count > STREAM_BUF_SIZE)
count = STREAM_BUF_SIZE - stream_buf_used;
}
memcpy(stream_buffer + stream_buf_used, buf, count);
stream_buf_used += count;
return count;
}
/* One-time init at startup */
void INIT_ATTR recording_init(void)
{
/* Init API */
ci.enc_pcmbuf_read = enc_pcmbuf_read;
ci.enc_pcmbuf_advance = enc_pcmbuf_advance;
ci.enc_encbuf_get_buffer = enc_encbuf_get_buffer;
ci.enc_encbuf_finish_buffer = enc_encbuf_finish_buffer;
ci.enc_stream_read = enc_stream_read;
ci.enc_stream_lseek = enc_stream_lseek;
ci.enc_stream_write = enc_stream_write;
}