blob: b11c41b424cf62e6cd78ae96dd59e9e576eb2594 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
2005-04-16 Tomas Salfischberger:
- New BMP loader function, based on the old one (borrowed a lot of
calculations and checks there.)
- Conversion part needs some optimization, doing unneeded calulations now.
2006-11-18 Jens Arnold: complete rework
- All canonical formats supported now (1, 4, 8, 15/16, 24 and 32 bit)
- better protection against malformed / non-standard BMPs
- code heavily optimised for both size and speed
- dithering for 2 bit targets
2008-11-02 Akio Idehara: refactor for scaler frontend
2008-12-08 Andrew Mahone: partial-line reading, scaler frontend
- read_part_line does the actual source BMP reading, return columns read
and updates fields in a struct bmp_args with the new data and current
reader state
- skip_lines_bmp and store_part_bmp implement the scaler callbacks to skip
ahead by whole lines, or read the next chunk of the current line
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "inttypes.h"
#include "system.h"
#ifndef PLUGIN
#include "debug.h"
#endif
#include "lcd.h"
#include "file.h"
#include "bmp.h"
#ifdef HAVE_REMOTE_LCD
#include "lcd-remote.h"
#endif
#ifdef ROCKBOX_DEBUG_BMP_LOADER
#define BDEBUGF DEBUGF
#else
#define BDEBUGF(...)
#endif
#ifndef __PCTOOL__
#include "config.h"
#include "resize.h"
#else
#undef DEBUGF
#define DEBUGF(...)
#endif
#ifdef __GNUC__
#define STRUCT_PACKED __attribute__((packed))
#else
#define STRUCT_PACKED
#pragma pack (push, 2)
#endif
/* BMP header structure */
struct bmp_header {
uint16_t type; /* signature - 'BM' */
uint32_t size; /* file size in bytes */
uint16_t reserved1; /* 0 */
uint16_t reserved2; /* 0 */
uint32_t off_bits; /* offset to bitmap */
uint32_t struct_size; /* size of this struct (40) */
int32_t width; /* bmap width in pixels */
int32_t height; /* bmap height in pixels */
uint16_t planes; /* num planes - always 1 */
uint16_t bit_count; /* bits per pixel */
uint32_t compression; /* compression flag */
uint32_t size_image; /* image size in bytes */
int32_t x_pels_per_meter; /* horz resolution */
int32_t y_pels_per_meter; /* vert resolution */
uint32_t clr_used; /* 0 -> color table size */
uint32_t clr_important; /* important color count */
} STRUCT_PACKED;
/* masks for supported BI_BITFIELDS encodings (16/32 bit) */
static const struct uint8_rgb bitfields[][4] = {
/* 15bit */
{
{ .blue = 0x00, .green = 0x7c, .red = 0x00, .alpha = 0x00 },
{ .blue = 0xe0, .green = 0x03, .red = 0x00, .alpha = 0x00 },
{ .blue = 0x1f, .green = 0x00, .red = 0x00, .alpha = 0x00 },
{ .blue = 0x00, .green = 0x00, .red = 0x00, .alpha = 0x00 },
},
/* 16bit */
{
{ .blue = 0x00, .green = 0xf8, .red = 0x00, .alpha = 0x00 },
{ .blue = 0xe0, .green = 0x07, .red = 0x00, .alpha = 0x00 },
{ .blue = 0x1f, .green = 0x00, .red = 0x00, .alpha = 0x00 },
{ .blue = 0x00, .green = 0x00, .red = 0x00, .alpha = 0x00 },
},
/* 32bit BGRA */
{
{ .blue = 0x00, .green = 0x00, .red = 0xff, .alpha = 0x00 },
{ .blue = 0x00, .green = 0xff, .red = 0x00, .alpha = 0x00 },
{ .blue = 0xff, .green = 0x00, .red = 0x00, .alpha = 0x00 },
{ .blue = 0x00, .green = 0x00, .red = 0x00, .alpha = 0xff },
},
/* 32bit ABGR */
{
{ .blue = 0x00, .green = 0x00, .red = 0x00, .alpha = 0xff },
{ .blue = 0x00, .green = 0x00, .red = 0xff, .alpha = 0x00 },
{ .blue = 0x00, .green = 0xff, .red = 0x00, .alpha = 0x00 },
{ .blue = 0xff, .green = 0x00, .red = 0x00, .alpha = 0x00 },
},
};
#if (LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)
/* the full 16x16 Bayer dither matrix may be calculated quickly with this table
*/
const unsigned char dither_table[16] =
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 };
#endif
#if ((LCD_DEPTH == 2) && (LCD_PIXELFORMAT == VERTICAL_INTERLEAVED)) \
|| (defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH == 2) \
&& (LCD_REMOTE_PIXELFORMAT == VERTICAL_INTERLEAVED))
const unsigned short vi_pattern[4] = {
0x0101, 0x0100, 0x0001, 0x0000
};
#endif
/******************************************************************************
* read_bmp_file()
*
* Reads a BMP file and puts the data in rockbox format in *bitmap.
*
*****************************************************************************/
int read_bmp_file(const char* filename,
struct bitmap *bm,
int maxsize,
int format,
const struct custom_format *cformat)
{
int fd, ret;
fd = open(filename, O_RDONLY);
/* Exit if file opening failed */
if (fd < 0) {
DEBUGF("read_bmp_file: can't open '%s', rc: %d\n", filename, fd);
return fd * 10 - 1;
}
BDEBUGF("read_bmp_file: '%s' remote: %d resize: %d keep_aspect: %d\n",
filename, !!(format & FORMAT_REMOTE), !!(format & FORMAT_RESIZE),
!!(format & FORMAT_KEEP_ASPECT));
ret = read_bmp_fd(fd, bm, maxsize, format, cformat);
close(fd);
return ret;
}
enum color_order {
/* only used for different types of 32bpp images */
BGRA, /* should be most common */
ABGR /* generated by some GIMP versions */
};
struct bmp_args {
/* needs to be at least 2byte aligned for faster 16bit reads.
* but aligning to cache should be even faster */
unsigned char buf[BM_MAX_WIDTH * 4] CACHEALIGN_AT_LEAST_ATTR(2);
int fd;
short padded_width;
short read_width;
short width;
short depth;
enum color_order order;
struct uint8_rgb *palette;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
int cur_row;
int cur_col;
struct img_part part;
#endif
/* as read_part_line() goes through the rows it'll set this to true
* if it finds transparency. Initialize to 0 before calling */
int alpha_detected;
/* for checking transparency it checks the against the very first byte
* of the bitmap. Initalize to 0x80 before calling */
unsigned char first_alpha_byte;
};
static unsigned int read_part_line(struct bmp_args *ba)
{
const int padded_width = ba->padded_width;
const int read_width = ba->read_width;
const int width = ba->width;
int depth = ba->depth;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
int cur_row = ba->cur_row;
int cur_col = ba->cur_col;
#endif
const int fd = ba->fd;
uint8_t *ibuf;
struct uint8_rgb *buf = (struct uint8_rgb *)(ba->buf);
const struct uint8_rgb *palette = ba->palette;
uint32_t component, data;
int ret;
int i, cols, len;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
cols = MIN(width - cur_col,(int)BM_MAX_WIDTH);
BDEBUGF("reading %d cols (width: %d, max: %d)\n",cols,width,BM_MAX_WIDTH);
len = (cols * (depth == 15 ? 16 : depth) + 7) >> 3;
#else
cols = width;
len = read_width;
#endif
ibuf = ((unsigned char *)buf) + (BM_MAX_WIDTH << 2) - len;
BDEBUGF("read_part_line: cols=%d len=%d\n",cols,len);
ret = read(fd, ibuf, len);
if (ret != len)
{
DEBUGF("read_part_line: error reading image, read returned %d "
"expected %d\n", ret, len);
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
BDEBUGF("cur_row: %d cur_col: %d cols: %d len: %d\n", cur_row, cur_col,
cols, len);
#endif
return 0;
}
/* detect if the image has useful alpha information.
* if all alpha bits are 0xff or 0x00 discard the information.
* if it has other bits, or is mixed with 0x00 and 0xff then interpret
* as alpha. assume no alpha until the opposite is proven. as mixed
* is alpha, compare to the first byte instead of 0xff and 0x00 separately
*/
if (depth == 32 && ba->first_alpha_byte == 0x80)
ba->first_alpha_byte = ibuf[3] ? 0xff : 0x0;
/* select different color orders within the switch-case to avoid
* nested if/switch */
if (depth == 32)
depth += ba->order;
while (ibuf < ba->buf + (BM_MAX_WIDTH << 2))
{
switch (depth)
{
case 1:
data = *ibuf++;
for (i = 0; i < 8; i++)
{
*buf++ = palette[data & 0x80 ? 1 : 0];
data <<= 1;
}
break;
case 4:
data = *ibuf++;
*buf++ = palette[data >> 4];
*buf++ = palette[data & 0xf];
break;
case 8:
*buf++ = palette[*ibuf++];
break;
case 15:
case 16:
data = letoh16(*(uint16_t*)ibuf);
component = (data << 3) & 0xf8;
component |= component >> 5;
buf->blue = component;
if (depth == 15)
{
data >>= 2;
component = data & 0xf8;
component |= component >> 5;
} else {
data >>= 3;
component = data & 0xfc;
component |= component >> 6;
}
buf->green = component;
data >>= 5;
component = data & 0xf8;
component |= component >> 5;
buf->red = component;
buf->alpha = 0xff;
buf++;
ibuf += 2;
break;
case 24:
buf->blue = *ibuf++;
buf->green = *ibuf++;
buf->red = *ibuf++;
buf->alpha = 0xff;
buf++;
break;
case 32 + BGRA:
buf->blue = *ibuf++;
buf->green = *ibuf++;
buf->red = *ibuf++;
buf->alpha = *ibuf++;
ba->alpha_detected |= (buf->alpha != ba->first_alpha_byte);
buf++;
break;
case 32 + ABGR:
buf->alpha = *ibuf++;
buf->blue = *ibuf++;
buf->green = *ibuf++;
buf->red = *ibuf++;
ba->alpha_detected |= (buf->alpha != ba->first_alpha_byte);
buf++;
break;
}
}
#if !defined(HAVE_LCD_COLOR) && \
((LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) || \
defined(PLUGIN))
ibuf = ba->buf;
buf = (struct uint8_rgb*)ba->buf;
while (ibuf < ba->buf + cols)
*ibuf++ = brightness(*buf++);
#endif
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
cur_col += cols;
if (cur_col == width)
{
#endif
int pad = padded_width - read_width;
if (pad > 0)
{
BDEBUGF("seeking %d bytes to next line\n",pad);
lseek(fd, pad, SEEK_CUR);
}
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
cur_col = 0;
BDEBUGF("read_part_line: completed row %d\n", cur_row);
cur_row += 1;
}
ba->cur_row = cur_row;
ba->cur_col = cur_col;
#endif
return cols;
}
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
static struct img_part *store_part_bmp(void *args)
{
struct bmp_args *ba = (struct bmp_args *)args;
ba->part.len = read_part_line(ba);
#ifdef HAVE_LCD_COLOR
ba->part.buf = (struct uint8_rgb *)ba->buf;
#else
ba->part.buf = (uint8_t *)ba->buf;
#endif
if (ba->part.len)
return &(ba->part);
else
return NULL;
}
#endif
static inline int rgbcmp(const struct uint8_rgb *rgb1, const struct uint8_rgb *rgb2)
{
return memcmp(rgb1, rgb2, sizeof(struct uint8_rgb));
}
#if LCD_DEPTH > 1
#if !defined(PLUGIN) && !defined(HAVE_JPEG) && !defined(HAVE_BMP_SCALING)
static inline
#endif
void output_row_8_native(uint32_t row, void * row_in,
struct scaler_context *ctx)
{
int col;
int fb_width = BM_WIDTH(ctx->bm->width,FORMAT_NATIVE,0);
uint8_t dy = DITHERY(row);
#ifdef HAVE_LCD_COLOR
struct uint8_rgb *qp = (struct uint8_rgb*)row_in;
#else
uint8_t *qp = (uint8_t*)row_in;
#endif
BDEBUGF("output_row: y: %lu in: %p\n",row, row_in);
#if LCD_DEPTH == 2
#if LCD_PIXELFORMAT == HORIZONTAL_PACKING
/* greyscale iPods */
fb_data *dest = (fb_data *)ctx->bm->data + fb_width * row;
int shift = 6;
int delta = 127;
unsigned bright;
unsigned data = 0;
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
bright = *qp++;
bright = (3 * bright + (bright >> 6) + delta) >> 8;
data |= (~bright & 3) << shift;
shift -= 2;
if (shift < 0) {
*dest++ = data;
data = 0;
shift = 6;
}
}
if (shift < 6)
*dest++ = data;
#elif LCD_PIXELFORMAT == VERTICAL_PACKING
/* iriver H1x0 */
fb_data *dest = (fb_data *)ctx->bm->data + fb_width *
(row >> 2);
int shift = 2 * (row & 3);
int delta = 127;
unsigned bright;
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
bright = *qp++;
bright = (3 * bright + (bright >> 6) + delta) >> 8;
*dest++ |= (~bright & 3) << shift;
}
#elif LCD_PIXELFORMAT == VERTICAL_INTERLEAVED
/* iAudio M3 */
fb_data *dest = (fb_data *)ctx->bm->data + fb_width *
(row >> 3);
int shift = row & 7;
int delta = 127;
unsigned bright;
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
bright = *qp++;
bright = (3 * bright + (bright >> 6) + delta) >> 8;
*dest++ |= vi_pattern[bright] << shift;
}
#endif /* LCD_PIXELFORMAT */
#elif LCD_DEPTH >= 16
/* iriver h300, colour iPods, X5 */
(void)fb_width;
fb_data *dest = STRIDE_MAIN((fb_data *)ctx->bm->data + fb_width * row,
(fb_data *)ctx->bm->data + row);
int delta = 127;
unsigned r, g, b;
/* setup alpha channel buffer */
unsigned char *bm_alpha = NULL;
if (ctx->bm->alpha_offset > 0)
bm_alpha = ctx->bm->data + ctx->bm->alpha_offset;
if (bm_alpha)
bm_alpha += ALIGN_UP(ctx->bm->width, 2) * row/2;
for (col = 0; col < ctx->bm->width; col++) {
(void) delta;
if (ctx->dither)
delta = DITHERXDY(col,dy);
r = qp->red;
g = qp->green;
b = qp->blue;
#if LCD_DEPTH < 24
r = (31 * r + (r >> 3) + delta) >> 8;
g = (63 * g + (g >> 2) + delta) >> 8;
b = (31 * b + (b >> 3) + delta) >> 8;
#endif
*dest = FB_RGBPACK_LCD(r, g, b);
dest += STRIDE_MAIN(1, ctx->bm->height);
if (bm_alpha) {
/* pack alpha channel for 2 pixels into 1 byte and negate
* according to the interal alpha channel format */
uint8_t alpha = ~qp->alpha;
if (col%2)
*bm_alpha++ |= alpha&0xf0;
else
*bm_alpha = alpha>>4;
}
qp++;
}
#endif /* LCD_DEPTH */
}
#endif
/******************************************************************************
* read_bmp_fd()
*
* Reads a BMP file in an open file descriptor and puts the data in rockbox
* format in *bitmap.
*
*****************************************************************************/
int read_bmp_fd(int fd,
struct bitmap *bm,
int maxsize,
int format,
const struct custom_format *cformat)
{
struct bmp_header bmph;
int padded_width;
int read_width;
int depth, numcolors, compression, totalsize;
int ret, hdr_size;
bool return_size = format & FORMAT_RETURN_SIZE;
bool read_alpha = format & FORMAT_TRANSPARENT;
enum color_order order = BGRA;
unsigned char *bitmap = bm->data;
struct uint8_rgb palette[256];
struct rowset rset;
struct dim src_dim;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) || \
defined(PLUGIN)
bool dither = false;
#endif
bool remote = false;
#ifdef HAVE_REMOTE_LCD
if (format & FORMAT_REMOTE) {
remote = true;
#if LCD_REMOTE_DEPTH == 1
format = FORMAT_MONO;
#endif
}
#endif /* HAVE_REMOTE_LCD */
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
unsigned int resize = IMG_NORESIZE;
if (format & FORMAT_RESIZE) {
resize = IMG_RESIZE;
}
#else
(void)format;
#endif /*(LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)*/
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) || \
defined(PLUGIN)
if (format & FORMAT_DITHER) {
dither = true;
}
#endif
/* read fileheader */
ret = read(fd, &bmph, sizeof(struct bmp_header));
if (ret < 0) {
return ret * 10 - 2;
}
if (ret != sizeof(struct bmp_header)) {
DEBUGF("read_bmp_fd: can't read BMP header.");
return -3;
}
src_dim.width = letoh32(bmph.width);
src_dim.height = letoh32(bmph.height);
if (src_dim.height < 0) { /* Top-down BMP file */
src_dim.height = -src_dim.height;
rset.rowstep = 1;
} else { /* normal BMP */
rset.rowstep = -1;
}
depth = letoh16(bmph.bit_count);
/* 4-byte boundary aligned */
read_width = ((src_dim.width * (depth == 15 ? 16 : depth) + 7) >> 3);
padded_width = (read_width + 3) & ~3;
BDEBUGF("width: %d height: %d depth: %d padded_width: %d\n", src_dim.width,
src_dim.height, depth, padded_width);
#if (LCD_DEPTH > 1) || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)
if ((format & 3) == FORMAT_ANY) {
if (depth == 1)
format = (format & ~3);
else
format = (format & ~3) | FORMAT_NATIVE;
}
bm->format = format & 1;
if ((format & 1) == FORMAT_MONO)
{
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
resize &= ~IMG_RESIZE;
resize |= IMG_NORESIZE;
#endif
remote = false;
}
#elif !defined(PLUGIN)
if (src_dim.width > BM_MAX_WIDTH)
return -6;
#endif /*(LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)*/
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
if (resize & IMG_RESIZE) {
if(format & FORMAT_KEEP_ASPECT) {
/* keep aspect ratio.. */
struct dim resize_dim = {
.width = bm->width,
.height = bm->height,
};
if (recalc_dimension(&resize_dim, &src_dim))
resize = IMG_NORESIZE;
bm->width = resize_dim.width;
bm->height = resize_dim.height;
}
}
if (!(resize & IMG_RESIZE)) {
#endif
/* returning image size */
bm->width = src_dim.width;
bm->height = src_dim.height;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
}
#endif
#if LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)
format &= 1;
#endif
if (rset.rowstep > 0) { /* Top-down BMP file */
rset.rowstart = 0;
rset.rowstop = bm->height;
} else { /* normal BMP */
rset.rowstart = bm->height - 1;
rset.rowstop = -1;
}
/* need even rows (see lcd-16bit-common.c for details) */
int alphasize = ALIGN_UP(bm->width, 2) * bm->height / 2;
if (cformat)
totalsize = cformat->get_size(bm);
else {
totalsize = BM_SIZE(bm->width,bm->height,format,remote);
if (!remote)
if (depth == 32 && read_alpha) /* account for possible 4bit alpha per pixel */
totalsize += alphasize;
}
if(return_size)
{
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
if(resize)
totalsize += BM_SCALED_SIZE(bm->width, 0, 0, 0);
else if (bm->width > BM_MAX_WIDTH)
totalsize += bm->width*4;
#endif
return totalsize;
}
/* Check if this fits the buffer */
if (totalsize > maxsize) {
DEBUGF("read_bmp_fd: Bitmap too large for buffer: "
"%d bytes (%d max).\n", totalsize, maxsize);
return -6;
}
hdr_size = letoh32(bmph.struct_size);
compression = letoh32(bmph.compression);
if (depth <= 8) {
numcolors = letoh32(bmph.clr_used);
if (numcolors == 0)
numcolors = BIT_N(depth);
/* forward to the color table */
lseek(fd, 14+hdr_size, SEEK_SET);
} else {
numcolors = 0;
if (compression == 3) {
if (hdr_size >= 56)
numcolors = 4;
else /* hdr_size == 52 */
numcolors = 3;
}
}
/* read color tables. for BI_BITFIELDS this actually
* reads the color masks */
if (numcolors > 0 && numcolors <= 256) {
int i;
for (i = 0; i < numcolors; i++) {
if (read(fd, &palette[i], sizeof(struct uint8_rgb))
!= (int)sizeof(struct uint8_rgb)) {
DEBUGF("read_bmp_fd: Can't read color palette\n");
return -7;
}
}
}
switch (depth) {
case 16:
#if LCD_DEPTH >= 16
/* don't dither 16 bit BMP to LCD with same or larger depth */
if (!remote)
dither = false;
#endif
if (compression == 0) { /* BI_RGB, i.e. 15 bit */
depth = 15;
break;
} /* else fall through */
case 32:
if (compression == 3) { /* BI_BITFIELDS */
bool found = false;
int i, j;
/* (i == 0) is 15bit, (i == 1) is 16bit, (i == {2,3}) is 32bit */
for (i = 0; i < ARRAY_SIZE(bitfields) && !found; i++) {
/* for 15bpp and higher numcolors has the number of color masks */
for (j = 0; j < numcolors; j++) {
if (!rgbcmp(&palette[j], &bitfields[i][j])) {
found = true;
} else {
found = false;
break;
}
}
}
if (found) {
if (i == 1) /* 15bit */
depth = 15;
else if (i == 4) /* 32bit, ABGR bitmap */
order = ABGR;
break;
}
} /* else fall through */
default:
if (compression != 0) { /* not BI_RGB */
DEBUGF("read_bmp_fd: Unsupported compression (type %d)\n",
compression);
return -8;
}
break;
}
#if LCD_DEPTH >= 24
/* Never dither 24/32 bit BMP to 24 bit LCDs */
if (depth >= 24 && !remote)
dither = false;
#endif
/* Search to the beginning of the image data */
lseek(fd, (off_t)letoh32(bmph.off_bits), SEEK_SET);
memset(bitmap, 0, totalsize);
#ifdef HAVE_LCD_COLOR
if (read_alpha && depth == 32)
bm->alpha_offset = totalsize - alphasize;
else
bm->alpha_offset = 0;
#endif
struct bmp_args ba = {
.fd = fd, .padded_width = padded_width, .read_width = read_width,
.width = src_dim.width, .depth = depth, .palette = palette,
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
.cur_row = 0, .cur_col = 0, .part = {0,0},
#endif
.alpha_detected = false, .first_alpha_byte = 0x80,
.order = order,
};
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
if (resize)
{
if (resize_on_load(bm, dither, &src_dim, &rset,
bitmap + totalsize, maxsize - totalsize,
cformat, IF_PIX_FMT(0,) store_part_bmp, &ba))
return totalsize;
else
return 0;
}
#endif /* LCD_DEPTH */
#if LCD_DEPTH > 1 || defined(PLUGIN)
struct scaler_context ctx = {
.bm = bm,
.dither = dither,
};
#endif
#if defined(PLUGIN) || defined(HAVE_JPEG) || defined(HAVE_BMP_SCALING)
#if LCD_DEPTH > 1
void (*output_row_8)(uint32_t, void*, struct scaler_context*) =
output_row_8_native;
#elif defined(PLUGIN)
void (*output_row_8)(uint32_t, void*, struct scaler_context*) = NULL;
#endif
#if LCD_DEPTH > 1 || defined(PLUGIN)
if (cformat)
output_row_8 = cformat->output_row_8;
#endif
#endif
unsigned char *buf = ba.buf;
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) || \
defined(PLUGIN)
if (bm->width > BM_MAX_WIDTH)
{
#if defined(HAVE_BMP_SCALING) || defined(PLUGIN)
unsigned int len = maxsize - totalsize;
buf = bitmap + totalsize;
ALIGN_BUFFER(buf, len, sizeof(uint32_t));
if (bm->width*4 > (int)len)
#endif
return -6;
}
#endif
int row;
/* loop to read rows and put them to buffer */
for (row = rset.rowstart; row != rset.rowstop; row += rset.rowstep) {
#if (LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1)) && \
defined(HAVE_BMP_SCALING) || defined(PLUGIN)
if (bm->width > BM_MAX_WIDTH)
{
#if defined(HAVE_LCD_COLOR)
struct uint8_rgb *p = (struct uint8_rgb *)buf;
#else
uint8_t* p = buf;
#endif
do {
int len = read_part_line(&ba);
if (!len)
return -9;
memcpy(p, ba.buf, len*sizeof(*p));
p += len;
} while (ba.cur_col);
}
else
#endif
if (!read_part_line(&ba))
return -9;
#ifndef PLUGIN
#if !defined(HAVE_LCD_COLOR) && \
(LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1))
uint8_t* qp = buf;
#else
struct uint8_rgb *qp = (struct uint8_rgb *)buf;
#endif
#endif
/* Convert to destination format */
#if ((LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)) && \
!defined(PLUGIN)
if (format == FORMAT_NATIVE) {
#if defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1
if (remote) {
unsigned char dy = DITHERY(row);
#if (LCD_REMOTE_DEPTH == 2) && (LCD_REMOTE_PIXELFORMAT == VERTICAL_INTERLEAVED)
/* iAudio X5/M5 remote */
fb_remote_data *dest = (fb_remote_data *)bitmap
+ bm->width * (row >> 3);
int shift = row & 7;
int delta = 127;
unsigned bright;
int col;
for (col = 0; col < bm->width; col++) {
if (dither)
delta = DITHERXDY(col,dy);
#if !defined(HAVE_LCD_COLOR) && \
(LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1))
bright = *qp++;
#else
bright = brightness(*qp++);
#endif
bright = (3 * bright + (bright >> 6) + delta) >> 8;
*dest++ |= vi_pattern[bright] << shift;
}
#endif /* LCD_REMOTE_DEPTH / LCD_REMOTE_PIXELFORMAT */
} else
#endif /* defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1 */
#endif /* (LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) &&
(LCD_REMOTE_DEPTH > 1) */
#if LCD_DEPTH > 1 || defined(PLUGIN)
{
#if !defined(PLUGIN) && !defined(HAVE_JPEG) && !defined(HAVE_BMP_SCALING)
output_row_8_native(row, buf, &ctx);
#else
output_row_8(row, buf, &ctx);
#endif
}
#endif
#if ((LCD_DEPTH > 1) || defined(HAVE_REMOTE_LCD) && (LCD_REMOTE_DEPTH > 1)) && \
!defined(PLUGIN)
}
#ifndef PLUGIN
else
#endif
#endif
#ifndef PLUGIN
{
unsigned char *p = bitmap + bm->width * (row >> 3);
unsigned char mask = BIT_N(row & 7);
int col;
for (col = 0; col < bm->width; col++, p++)
#if !defined(HAVE_LCD_COLOR) && \
(LCD_DEPTH > 1 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH > 1))
if (*qp++ < 128)
*p |= mask;
#else
if (brightness(*qp++) < 128)
*p |= mask;
#endif
}
#endif
}
#ifdef HAVE_LCD_COLOR
if (!ba.alpha_detected)
{ /* if this has an alpha channel, totalsize accounts for it as well
* subtract if no actual alpha information was found */
if (bm->alpha_offset > 0)
totalsize -= alphasize;
bm->alpha_offset = 0;
}
#endif
return totalsize; /* return the used buffer size. */
}