blob: 5ff2f212151cae8fd1ce40911d0979294aefc741 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Philipp Pertermann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#if defined(SIMULATOR) && (CONFIG_CODEC != SWCODEC)
#include <stdlib.h> /* sim uses rand for peakmeter simulation */
#endif
#include "thread.h"
#include "kernel.h"
#include "settings.h"
#include "storage.h"
#include "lcd.h"
#include "scrollbar.h"
#include "string.h"
#include "button.h"
#include "system.h"
#include "font.h"
#include "icons.h"
#include "lang.h"
#include "peakmeter.h"
#include "audio.h"
#include "screen_access.h"
#ifdef HAVE_BACKLIGHT
#include "backlight.h"
#endif
#include "action.h"
#if CONFIG_CODEC == SWCODEC
#include "pcm.h"
#include "pcm_mixer.h"
#ifdef HAVE_RECORDING
#include "pcm_record.h"
#endif
static bool pm_playback = true; /* selects between playback and recording peaks */
#endif
static struct meter_scales scales[NB_SCREENS];
#if !defined(SIMULATOR) && CONFIG_CODEC != SWCODEC
/* Data source */
static int pm_src_left = MAS_REG_DQPEAK_L;
static int pm_src_right = MAS_REG_DQPEAK_R;
#endif
/* Current values and cumulation */
static int pm_cur_left; /* current values (last peak_meter_peek) */
static int pm_cur_right;
static int pm_max_left; /* maximum values between peak meter draws */
static int pm_max_right;
#if defined(HAVE_AGC) || defined(HAVE_HISTOGRAM)
static int pm_peakhold_left; /* max. peak values between peakhold calls */
static int pm_peakhold_right; /* used for AGC and histogram display */
static long next_histogram_update;
#endif
/* Clip hold */
static bool pm_clip_left = false; /* when true a clip has occurred */
static bool pm_clip_right = false;
static long pm_clip_timeout_l; /* clip hold timeouts */
static long pm_clip_timeout_r;
/* Temporarily en- / disables peak meter. This is especially for external
applications to detect if the peak_meter is in use and needs drawing at all */
static bool peak_meter_enabled = true;
void peak_meter_enable(bool enable)
{
peak_meter_enabled = enable;
}
/** Parameters **/
/* Range */
static unsigned short peak_meter_range_min; /* minimum of range in samples */
static unsigned short peak_meter_range_max; /* maximum of range in samples */
static unsigned short pm_range; /* range width in samples */
static bool pm_use_dbfs = true; /* true if peakmeter displays dBfs */
static bool level_check; /* true if peeked at peakmeter before drawing */
static unsigned short pm_db_min = 0; /* minimum of range in 1/100 dB */
static unsigned short pm_db_max = 9000; /* maximum of range in 1/100 dB */
static unsigned short pm_db_range = 9000; /* range width in 1/100 dB */
/* Timing behaviour */
static int pm_peak_hold = HZ / 5; /* peak hold timeout ticks */
static int pm_peak_release = 8; /* peak release in units per read */
static int pm_clip_hold = HZ * 60; /* clip hold timeout ticks */
static bool pm_clip_eternal = false; /* true if clip timeout is disabled */
#ifdef HAVE_RECORDING
static unsigned short trig_strt_threshold;
static long trig_strt_duration;
static long trig_strt_dropout;
static unsigned short trig_stp_threshold;
static long trig_stp_hold;
static long trig_rstrt_gap;
/* point in time when the threshold was exceeded */
static long trig_hightime;
/* point in time when the volume fell below the threshold*/
static long trig_lowtime;
/* The output value of the trigger. See TRIG_XXX constants for valid values */
static int trig_status = TRIG_OFF;
static void (*trigger_listener)(int) = NULL;
/* clipping counter (only used for recording) */
static unsigned int pm_clipcount = 0; /* clipping count */
static bool pm_clipcount_active = false; /* counting or not */
#endif
/* debug only */
#ifdef PM_DEBUG
static int peek_calls = 0;
#define PEEKS_PER_DRAW_SIZE 40
static unsigned int peeks_per_redraw[PEEKS_PER_DRAW_SIZE];
#define TICKS_PER_DRAW_SIZE 20
static unsigned int ticks_per_redraw[TICKS_PER_DRAW_SIZE];
#endif
#if defined(HAVE_HISTOGRAM)
#define HIST_BUF_SIZE (LCD_WIDTH / 2)
static int hist_l = 0;
static int hist_r = 0;
static unsigned char history_l[HIST_BUF_SIZE];
static unsigned char history_r[HIST_BUF_SIZE];
static const char hist_level_marks[6] = { 29, 26, 23, 17, 9, 2};
static int history_pos = 0;
#define HIST_W (LCD_WIDTH / 2)
#if LCD_DEPTH > 1
#ifdef HAVE_LCD_COLOR
#define LCD_BAL_L LCD_RGBPACK(0, 0, 255)
#define LCD_BAL_R LCD_RGBPACK(204, 0, 0)
#define LCD_HIST_OVER LCD_RGBPACK(204, 0, 0)
#define LCD_HIST_HI LCD_RGBPACK(255, 204, 0)
#define LCD_HIST_OK LCD_RGBPACK(51, 153, 0)
#else /* HAVE_LCD_COLOR */
#define LCD_BATT_OK LCD_BLACK
#define LCD_BATT_LO LCD_DARKGRAY
#define LCD_DISK_OK LCD_BLACK
#define LCD_DISK_LO LCD_DARKGRAY
#define LCD_HIST_OVER LCD_BLACK
#define LCD_HIST_OK LCD_DARKGRAY
#define LCD_BAL LCD_DARKGRAY
#endif /* HAVE_LCD_COLOR */
#else /* LCD_DEPTH > 1 */
#define LCD_HIST_OVER LCD_DEFAULT_FG
#define LCD_HIST_OK LCD_DEFAULT_FG
#define LCD_BAL LCD_DEFAULT_FG
#endif /* LCD_DEPTH > 1 */
#endif /* HAVE_HISTOGRAM */
static void peak_meter_draw(struct screen *display, struct meter_scales *meter_scales,
int x, int y, int width, int height);
/* precalculated peak values that represent magical
dBfs values. Used to draw the scale */
static const short db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = {
32736, /* 0 db */
22752, /* - 3 db */
16640, /* - 6 db */
11648, /* - 9 db */
8320, /* -12 db */
4364, /* -18 db */
2064, /* -24 db */
1194, /* -30 db */
363, /* -40 db */
101, /* -50 db */
34, /* -60 db */
0, /* -inf */
};
static int db_scale_count = DB_SCALE_SRC_VALUES_SIZE;
/**
* Calculates dB Value for the peak meter, uses peak value as input
* @param int sample - The input value
* Make sure that 0 <= value < SAMPLE_RANGE
*
* @return int - The 2 digit fixed point result of the euation
* 20 * log (sample / SAMPLE_RANGE) + 90
* Output range is 0-9000 (that is 0.0 - 90.0 dB).
* Normally 0dB is full scale, here it is shifted +90dB.
* The calculation is based on the results of a linear
* approximation tool written specifically for this problem
* by Andreas Zwirtes (radhard@gmx.de). The result has an
* accurracy of better than 2%. It is highly runtime optimized,
* the cascading if-clauses do an successive approximation on
* the input value. This avoids big lookup-tables and
* for-loops.
* Improved by Jvo Studer for errors < 0.2dB for critical
* range of -12dB to 0dB (78.0 to 90.0dB).
*/
static int calc_db (int isample)
{
/* return n+m*(isample-istart)/100 */
int n;
long m;
int istart;
if (isample < 2308) { /* Range 1-5 */
if (isample < 115) { /* Range 1-3 */
if (isample < 24) {
if (isample < 5) {
istart = 1; /* Range 1 */
n = 98;
m = 34950;
}
else {
istart = 5; /* Range 2 */
n = 1496;
m = 7168;
}
}
else {
istart = 24; /* Range 3 */
n = 2858;
m = 1498;
}
}
else { /* Range 4-5 */
if (isample < 534) {
istart = 114; /* Range 4 */
n = 4207;
m = 319;
}
else {
istart = 588; /* Range 5 */
n = 5583;
m = 69;
}
}
}
else { /* Range 6-9 */
if (isample < 12932) {
if (isample < 6394) {
istart = 2608; /* Range 6 */
n = 6832;
m = 21;
}
else {
istart = 7000; /* Range 7 */
n = 7682;
m = 9;
}
}
else {
if (isample < 22450) {
istart = 13000; /* Range 8 */
n = 8219;
m = 5;
}
else {
istart = 22636; /* Range 9 */
n = 8697;
m = 3;
}
}
}
return n + (m * (long)(isample - istart)) / 100L;
}
/**
* A helper function for peak_meter_db2sample. Don't call it separately but
* use peak_meter_db2sample. If one or both of min and max are outside the
* range 0 <= min (or max) < 8961 the behaviour of this function is
* undefined. It may not return.
* @param int min - The minimum of the value range that is searched.
* @param int max - The maximum of the value range that is searched.
* @param int db - The value in dBfs * (-100) for which the according
* minimal peak sample is searched.
* @return int - A linear volume value with 0 <= value < MAX_PEAK
*/
static int db_to_sample_bin_search(int min, int max, int db)
{
int test = min + (max - min) / 2;
if (min < max) {
if (calc_db(test) < db) {
test = db_to_sample_bin_search(test, max, db);
} else {
if (calc_db(test-1) > db) {
test = db_to_sample_bin_search(min, test, db);
}
}
}
return test;
}
/**
* Converts a value representing dBfs to a linear
* scaled volume info as it is used by the MAS.
* An incredibly inefficiant function which is
* the vague inverse of calc_db. This really
* should be replaced by something better soon.
*
* @param int db - A dBfs * 100 value with
* -9000 < value <= 0
* @return int - The return value is in the range of
* 0 <= return value < MAX_PEAK
*/
int peak_meter_db2sample(int db)
{
int retval = 0;
/* what is the maximum pseudo db value */
int max_peak_db = calc_db(MAX_PEAK - 1);
/* range check: db value to big */
if (max_peak_db + db < 0) {
retval = 0;
}
/* range check: db value too small */
else if (max_peak_db + db >= max_peak_db) {
retval = MAX_PEAK -1;
}
/* value in range: find the matching linear value */
else {
retval = db_to_sample_bin_search(0, MAX_PEAK, max_peak_db + db);
/* as this is a dirty function anyway, we want to adjust the
full scale hit manually to avoid users complaining that when
they adjust maximum for 0 dBfs and display it in percent it
shows 99%. That is due to precision loss and this is the
optical fix */
}
return retval;
}
/**
* Set the min value for restriction of the value range.
* @param int newmin - depending whether dBfs is used
* newmin is a value in dBfs * 100 or in linear percent values.
* for dBfs: -9000 < newmin <= 0
* for linear: 0 <= newmin <= 100
*/
static void peak_meter_set_min(int newmin)
{
if (pm_use_dbfs) {
peak_meter_range_min = peak_meter_db2sample(newmin);
} else {
if (newmin < peak_meter_range_max) {
peak_meter_range_min = newmin * MAX_PEAK / 100;
}
}
pm_range = peak_meter_range_max - peak_meter_range_min;
/* Avoid division by zero. */
if (pm_range == 0) {
pm_range = 1;
}
pm_db_min = calc_db(peak_meter_range_min);
pm_db_range = pm_db_max - pm_db_min;
FOR_NB_SCREENS(i)
scales[i].db_scale_valid = false;
}
/**
* Returns the minimum value of the range the meter
* displays. If the scale is set to dBfs it returns
* dBfs values * 100 or linear percent values.
* @return: using dBfs : -9000 < value <= 0
* using linear scale: 0 <= value <= 100
*/
int peak_meter_get_min(void)
{
int retval = 0;
if (pm_use_dbfs) {
retval = calc_db(peak_meter_range_min) - calc_db(MAX_PEAK - 1);
} else {
retval = peak_meter_range_min * 100 / MAX_PEAK;
}
return retval;
}
/**
* Set the max value for restriction of the value range.
* @param int newmax - depending wether dBfs is used
* newmax is a value in dBfs * 100 or in linear percent values.
* for dBfs: -9000 < newmax <= 0
* for linear: 0 <= newmax <= 100
*/
static void peak_meter_set_max(int newmax)
{
if (pm_use_dbfs) {
peak_meter_range_max = peak_meter_db2sample(newmax);
} else {
if (newmax > peak_meter_range_min) {
peak_meter_range_max = newmax * MAX_PEAK / 100;
}
}
pm_range = peak_meter_range_max - peak_meter_range_min;
/* Avoid division by zero. */
if (pm_range == 0) {
pm_range = 1;
}
pm_db_max = calc_db(peak_meter_range_max);
pm_db_range = pm_db_max - pm_db_min;
FOR_NB_SCREENS(i)
scales[i].db_scale_valid = false;
}
/**
* Returns the minimum value of the range the meter
* displays. If the scale is set to dBfs it returns
* dBfs values * 100 or linear percent values
* @return: using dBfs : -9000 < value <= 0
* using linear scale: 0 <= value <= 100
*/
int peak_meter_get_max(void)
{
int retval = 0;
if (pm_use_dbfs) {
retval = calc_db(peak_meter_range_max) - calc_db(MAX_PEAK - 1);
} else {
retval = peak_meter_range_max * 100 / MAX_PEAK;
}
return retval;
}
/**
* Returns whether the meter is currently displaying dBfs or percent values.
* @return bool - true if the meter is displaying dBfs
false if the meter is displaying percent values.
*/
bool peak_meter_get_use_dbfs(void)
{
return pm_use_dbfs;
}
/**
* Specifies whether the values displayed are scaled
* as dBfs or as linear percent values.
* @param use - set to true for dBfs,
* set to false for linear scaling in percent
*/
void peak_meter_set_use_dbfs(bool use)
{
pm_use_dbfs = use;
FOR_NB_SCREENS(i)
scales[i].db_scale_valid = false;
}
/**
* Initialize the range of the meter. Only values
* that are in the range of [range_min ... range_max]
* are displayed.
* @param bool dbfs - set to true for dBfs,
* set to false for linear scaling in percent
* @param int range_min - Specifies the lower value of the range.
* Pass a value dBfs * 100 when dbfs is set to true.
* Pass a percent value when dbfs is set to false.
* @param int range_max - Specifies the upper value of the range.
* Pass a value dBfs * 100 when dbfs is set to true.
* Pass a percent value when dbfs is set to false.
*/
void peak_meter_init_range( bool dbfs, int range_min, int range_max)
{
pm_use_dbfs = dbfs;
peak_meter_set_min(range_min);
peak_meter_set_max(range_max);
}
/**
* Initialize the peak meter with all relevant values concerning times.
* @param int release - Set the maximum amount of pixels the meter is allowed
* to decrease with each redraw
* @param int hold_ms - Select the time in ms for the time the peak indicator
* is reset after a peak occurred.
* @param int clip_hold_sec - Select the time in seconds for the time the peak
* indicator is reset after a peak occurred.
*/
void peak_meter_init_times(int release, int hold_ms, int clip_hold_sec)
{
pm_peak_hold = hold_ms/(1000UL/HZ); /* convert ms to ticks */
pm_peak_release = release;
pm_clip_hold = HZ * clip_hold_sec;
}
#ifdef HAVE_RECORDING
/**
* Enable/disable clip counting
*/
void pm_activate_clipcount(bool active)
{
pm_clipcount_active = active;
}
/**
* Get clipping counter value
*/
int pm_get_clipcount(void)
{
return pm_clipcount;
}
/**
* Set clipping counter to zero (typically at start of recording or playback)
*/
void pm_reset_clipcount(void)
{
pm_clipcount = 0;
}
#endif
/**
* Set the source of the peak meter to playback or to
* record.
* @param: bool playback - If true playback peak meter is used.
* If false recording peak meter is used.
*/
void peak_meter_playback(bool playback)
{
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
(void)playback;
#elif CONFIG_CODEC == SWCODEC
pm_playback = playback;
#else
if (playback) {
pm_src_left = MAS_REG_DQPEAK_L;
pm_src_right = MAS_REG_DQPEAK_R;
} else {
pm_src_left = MAS_REG_QPEAK_L;
pm_src_right = MAS_REG_QPEAK_R;
}
#endif
/* reset the scales just in case recording and playback
use different viewport sizes. Normally we should be checking viewport
sizes every time but this will do for now */
FOR_NB_SCREENS(i)
scales[i].db_scale_valid = false;
}
#ifdef HAVE_RECORDING
static void set_trig_status(int new_state)
{
if (trig_status != new_state) {
trig_status = new_state;
if (trigger_listener != NULL) {
trigger_listener(trig_status);
}
}
}
#endif
/**
* Reads peak values from the MAS, and detects clips. The
* values are stored in pm_max_left pm_max_right for later
* evauluation. Consecutive calls to peak_meter_peek detect
* that ocurred. This function could be used by a thread for
* busy reading the MAS.
*/
void peak_meter_peek(void)
{
int left, right;
#ifdef HAVE_RECORDING
bool was_clipping = pm_clip_left || pm_clip_right;
#endif
/* read current values */
#if CONFIG_CODEC == SWCODEC
if (pm_playback)
{
static struct pcm_peaks chan_peaks; /* *MUST* be static */
mixer_channel_calculate_peaks(PCM_MIXER_CHAN_PLAYBACK,
&chan_peaks);
pm_cur_left = chan_peaks.left;
pm_cur_right = chan_peaks.right;
}
#ifdef HAVE_RECORDING
else
pcm_calculate_rec_peaks(&pm_cur_left, &pm_cur_right);
#endif
left = pm_cur_left;
right = pm_cur_right;
#else
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
pm_cur_left = left = mas_codec_readreg(pm_src_left);
pm_cur_right = right = mas_codec_readreg(pm_src_right);
#else
pm_cur_left = left = 8000;
pm_cur_right = right = 9000;
#endif
#endif
/* check for clips
An clip is assumed when two consecutive readouts
of the volume are at full scale. This is proven
to be inaccurate in both ways: it may detect clips
when no clip occurred and it may fail to detect
a real clip. For software codecs, the peak is already
the max of a bunch of samples, so use one max value
or you fail to detect clipping! */
#if CONFIG_CODEC == SWCODEC
if (left == MAX_PEAK - 1) {
#else
if ((left == pm_max_left) &&
(left == MAX_PEAK - 1)) {
#endif
pm_clip_left = true;
pm_clip_timeout_l = current_tick + pm_clip_hold;
}
#if CONFIG_CODEC == SWCODEC
if (right == MAX_PEAK - 1) {
#else
if ((right == pm_max_right) &&
(right == MAX_PEAK - 1)) {
#endif
pm_clip_right = true;
pm_clip_timeout_r = current_tick + pm_clip_hold;
}
#ifdef HAVE_RECORDING
if(!was_clipping && (pm_clip_left || pm_clip_right))
{
if(pm_clipcount_active)
pm_clipcount++;
}
#endif
/* peaks are searched -> we have to find the maximum. When
many calls of peak_meter_peek the maximum value will be
stored in pm_max_xxx. This maximum is reset by the
functions peak_meter_read_x. */
pm_max_left = MAX(pm_max_left, left);
pm_max_right = MAX(pm_max_right, right);
#ifdef HAVE_RECORDING
#if CONFIG_CODEC == SWCODEC
/* Ignore any unread peakmeter data */
#define MAX_DROP_TIME HZ/7 /* this value may need tweaking. Increase if you are
getting trig events when you shouldn't with
trig_stp_hold = 0 */
if (!trig_stp_hold)
trig_stp_hold = MAX_DROP_TIME;
#endif
switch (trig_status) {
case TRIG_READY:
/* no more changes, if trigger was activated as release trigger */
/* threshold exceeded? */
if ((left > trig_strt_threshold)
|| (right > trig_strt_threshold)) {
/* reset trigger duration */
trig_hightime = current_tick;
/* reset dropout duration */
trig_lowtime = current_tick;
if (trig_strt_duration)
set_trig_status(TRIG_STEADY);
else
/* if trig_duration is set to 0 the user wants to start
recording immediately */
set_trig_status(TRIG_GO);
}
break;
case TRIG_STEADY:
case TRIG_RETRIG:
/* trigger duration exceeded */
if (current_tick - trig_hightime > trig_strt_duration) {
set_trig_status(TRIG_GO);
} else {
/* threshold exceeded? */
if ((left > trig_strt_threshold)
|| (right > trig_strt_threshold)) {
/* reset lowtime */
trig_lowtime = current_tick;
}
/* volume is below threshold */
else {
/* dropout occurred? */
if (current_tick - trig_lowtime > trig_strt_dropout){
if (trig_status == TRIG_STEADY){
set_trig_status(TRIG_READY);
}
/* trig_status == TRIG_RETRIG */
else {
/* the gap has already expired */
trig_lowtime = current_tick - trig_rstrt_gap - 1;
set_trig_status(TRIG_POSTREC);
}
}
}
}
break;
case TRIG_GO:
case TRIG_CONTINUE:
/* threshold exceeded? */
if ((left > trig_stp_threshold)
|| (right > trig_stp_threshold)) {
/* restart hold time countdown */
trig_lowtime = current_tick;
#if CONFIG_CODEC == SWCODEC
} else if (current_tick - trig_lowtime > MAX_DROP_TIME){
#else
} else {
#endif
set_trig_status(TRIG_POSTREC);
trig_hightime = current_tick;
}
break;
case TRIG_POSTREC:
/* gap time expired? */
if (current_tick - trig_lowtime > trig_rstrt_gap){
/* start threshold exceeded? */
if ((left > trig_strt_threshold)
|| (right > trig_strt_threshold)) {
set_trig_status(TRIG_RETRIG);
trig_hightime = current_tick;
trig_lowtime = current_tick;
}
else
/* stop threshold exceeded */
if ((left > trig_stp_threshold)
|| (right > trig_stp_threshold)) {
if (current_tick - trig_hightime > trig_stp_hold){
trig_lowtime = current_tick;
set_trig_status(TRIG_CONTINUE);
} else {
trig_lowtime = current_tick - trig_rstrt_gap - 1;
}
}
/* below any threshold */
else {
if (current_tick - trig_lowtime > trig_stp_hold){
set_trig_status(TRIG_READY);
} else {
trig_hightime = current_tick;
}
}
}
/* still within the gap time */
else {
/* stop threshold exceeded */
if ((left > trig_stp_threshold)
|| (right > trig_stp_threshold)) {
set_trig_status(TRIG_CONTINUE);
trig_lowtime = current_tick;
}
/* hold time expired */
else if (current_tick - trig_lowtime > trig_stp_hold){
trig_hightime = current_tick;
trig_lowtime = current_tick;
set_trig_status(TRIG_READY);
}
}
break;
}
#if CONFIG_CODEC == SWCODEC
/* restore stop hold value */
if (trig_stp_hold == MAX_DROP_TIME)
trig_stp_hold = 0;
#endif
#endif
/* check levels next time peakmeter drawn */
level_check = true;
#ifdef PM_DEBUG
peek_calls++;
#endif
}
/**
* Reads out the peak volume of the left channel.
* @return int - The maximum value that has been detected
* since the last call of peak_meter_read_l. The value
* is in the range 0 <= value < MAX_PEAK.
*/
static int peak_meter_read_l(void)
{
/* pm_max_left contains the maximum of all peak values that were read
by peak_meter_peek since the last call of peak_meter_read_l */
int retval;
#if defined(SIMULATOR) && (CONFIG_CODEC != SWCODEC)
srand(current_tick);
pm_max_left = rand()%MAX_PEAK;
#endif
retval = pm_max_left;
#if defined(HAVE_HISTOGRAM) || defined(HAVE_AGC)
/* store max peak value for peak_meter_get_peakhold_x readout */
pm_peakhold_left = MAX(pm_max_left, pm_peakhold_left);
#endif
#ifdef PM_DEBUG
peek_calls = 0;
#endif
/* reset pm_max_left so that subsequent calls of peak_meter_peek don't
get fooled by an old maximum value */
pm_max_left = pm_cur_left;
return retval;
}
/**
* Reads out the peak volume of the right channel.
* @return int - The maximum value that has been detected
* since the last call of peak_meter_read_l. The value
* is in the range 0 <= value < MAX_PEAK.
*/
static int peak_meter_read_r(void)
{
/* peak_meter_r contains the maximum of all peak values that were read
by peak_meter_peek since the last call of peak_meter_read_r */
int retval;
#if defined(SIMULATOR) && (CONFIG_CODEC != SWCODEC)
srand(current_tick);
pm_max_right = rand()%MAX_PEAK;
#endif
retval = pm_max_right;
#if defined(HAVE_HISTOGRAM) || defined(HAVE_AGC)
/* store max peak value for peak_meter_get_peakhold_x readout */
pm_peakhold_right = MAX(pm_max_right, pm_peakhold_right);
#endif
#ifdef PM_DEBUG
peek_calls = 0;
#endif
/* reset pm_max_right so that subsequent calls of peak_meter_peek don't
get fooled by an old maximum value */
pm_max_right = pm_cur_right;
return retval;
}
#if defined(HAVE_AGC) || defined(HAVE_HISTOGRAM)
/**
* Reads out the current peak-hold values since the last call.
* This is used by the histogram feature in the recording screen.
* Values are in the range 0 <= peak_x < MAX_PEAK. MAX_PEAK is typ 32767.
*/
void peak_meter_get_peakhold(int *peak_left, int *peak_right)
{
if (peak_left)
*peak_left = pm_peakhold_left;
if (peak_right)
*peak_right = pm_peakhold_right;
#ifdef HAVE_HISTOGRAM
if (*peak_left > hist_l)
hist_l = *peak_left;
if (*peak_right > hist_r)
hist_r = *peak_right;
#endif
pm_peakhold_left = 0;
pm_peakhold_right = 0;
}
#endif
/**
* Reset the detected clips. This method is for
* use by the user interface.
* @param int unused - This parameter was added to
* make the function compatible with set_int
*/
void peak_meter_set_clip_hold(int time)
{
pm_clip_left = false;
pm_clip_right = false;
pm_clip_eternal = (time > 0) ? false : true;
}
/**
* Scales a peak value as read from the MAS to the range of meterwidth.
* The scaling is performed according to the scaling method (dBfs / linear)
* and the range (peak_meter_range_min .. peak_meter_range_max).
* @param unsigned short val - The volume value. Range: 0 <= val < MAX_PEAK
* @param int meterwidht - The widht of the meter in pixel
* @return unsigned short - A value 0 <= return value <= meterwidth
*/
unsigned short peak_meter_scale_value(unsigned short val, int meterwidth)
{
int retval;
if (val <= peak_meter_range_min) {
return 0;
}
if (val >= peak_meter_range_max) {
return meterwidth;
}
retval = val;
/* different scaling is used for dBfs and linear percent */
if (pm_use_dbfs) {
/* scale the samples dBfs */
retval = (calc_db(retval) - pm_db_min) * meterwidth / pm_db_range;
}
/* Scale for linear percent display */
else
{
/* scale the samples */
retval = ((retval - peak_meter_range_min) * meterwidth)
/ pm_range;
}
return retval;
}
void peak_meter_screen(struct screen *display, int x, int y, int height)
{
peak_meter_draw(display, &scales[display->screen_type], x, y,
display->getwidth() - x, height);
}
/* sets *left and *right to the current *unscaled* values */
void peak_meter_current_vals(int *left, int *right)
{
static int left_level = 0, right_level = 0;
if (level_check){
/* only read the volume info from MAS if peek since last read*/
left_level = peak_meter_read_l();
right_level = peak_meter_read_r();
level_check = false;
}
*left = left_level;
*right = right_level;
}
/**
* Draws a peak meter in the specified size at the specified position.
* @param int x - The x coordinate.
* Make sure that 0 <= x and x + width < display->getwidth()
* @param int y - The y coordinate.
* Make sure that 0 <= y and y + height < display->getheight()
* @param int width - The width of the peak meter. Note that for display
* of clips a 3 pixel wide area is used ->
* width > 3
* @param int height - The height of the peak meter. height > 3
*/
static void peak_meter_draw(struct screen *display, struct meter_scales *scales,
int x, int y, int width, int height)
{
int left_level = 0, right_level = 0;
int left = 0, right = 0;
int meterwidth = width - 3;
int i, delta;
#if defined(HAVE_REMOTE_LCD) && !defined (ROCKBOX_HAS_LOGF)
static long peak_release_tick[2] = {0,0};
int screen_nr = display->screen_type == SCREEN_MAIN ? 0 : 1;
#else
static long peak_release_tick = 0;
#endif
#ifdef PM_DEBUG
static long pm_tick = 0;
int tmp = peek_calls;
#endif
/* if disabled only draw the peak meter */
if (peak_meter_enabled) {
peak_meter_current_vals(&left_level, &right_level);
/* scale the samples dBfs */
left = peak_meter_scale_value(left_level, meterwidth);
right = peak_meter_scale_value(right_level, meterwidth);
/*if the scale has changed -> recalculate the scale
(The scale becomes invalid when the range changed.) */
if (!scales->db_scale_valid){
if (pm_use_dbfs) {
db_scale_count = DB_SCALE_SRC_VALUES_SIZE;
for (i = 0; i < db_scale_count; i++){
/* find the real x-coords for predefined interesting
dBfs values. These only are recalculated when the
scaling of the meter changed. */
scales->db_scale_lcd_coord[i] =
peak_meter_scale_value(
db_scale_src_values[i],
meterwidth - 1);
}
}
/* when scaling linear we simly make 10% steps */
else {
db_scale_count = 10;
for (i = 0; i < db_scale_count; i++) {
scales->db_scale_lcd_coord[i] =
(i * (MAX_PEAK / 10) - peak_meter_range_min) *
meterwidth / pm_range;
}
}
/* mark scale valid to avoid recalculating dBfs values
of the scale. */
scales->db_scale_valid = true;
}
/* apply release */
#if defined(HAVE_REMOTE_LCD) && !defined (ROCKBOX_HAS_LOGF)
delta = current_tick - peak_release_tick[screen_nr];
peak_release_tick[screen_nr] = current_tick;
#else
delta = current_tick - peak_release_tick;
peak_release_tick = current_tick;
#endif
left = MAX(left , scales->last_left - delta * pm_peak_release);
right = MAX(right, scales->last_right - delta * pm_peak_release);
/* reset max values after timeout */
if (TIME_AFTER(current_tick, scales->pm_peak_timeout_l)){
scales->pm_peak_left = 0;
}
if (TIME_AFTER(current_tick, scales->pm_peak_timeout_r)){
scales->pm_peak_right = 0;
}
if (!pm_clip_eternal) {
if (pm_clip_left &&
TIME_AFTER(current_tick, pm_clip_timeout_l)){
pm_clip_left = false;
}
if (pm_clip_right &&
TIME_AFTER(current_tick, pm_clip_timeout_r)){
pm_clip_right = false;
}
}
/* check for new max values */
if (left > scales->pm_peak_left) {
scales->pm_peak_left = left - 1;
scales->pm_peak_timeout_l = current_tick + pm_peak_hold;
}
if (right > scales->pm_peak_right) {
scales->pm_peak_right = right - 1;
scales->pm_peak_timeout_r = current_tick + pm_peak_hold;
}
}
/* draw the peak meter */
display->set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
display->fillrect(x, y, width, height);
display->set_drawmode(DRMODE_SOLID);
/* draw left */
display->fillrect (x, y, left, height / 2 - 2 );
if (scales->pm_peak_left > 0) {
display->vline(x + scales->pm_peak_left, y, y + height / 2 - 2 );
}
if (pm_clip_left) {
display->fillrect(x + meterwidth, y, 3, height / 2 - 1);
}
/* draw right */
display->fillrect(x, y + height / 2 + 1, right, height / 2 - 2);
if (scales->pm_peak_right > 0) {
display->vline( x + scales->pm_peak_right, y + height / 2, y + height - 2);
}
if (pm_clip_right) {
display->fillrect(x + meterwidth, y + height / 2, 3, height / 2 - 1);
}
/* draw scale end */
display->vline(x + meterwidth, y, y + height - 2);
/* draw dots for scale marks */
for (i = 0; i < db_scale_count; i++) {
/* The x-coordinates of interesting scale mark points
have been calculated before */
display->drawpixel(x + scales->db_scale_lcd_coord[i],
y + height / 2 - 1);
}
#ifdef HAVE_RECORDING
#ifdef HAVE_BACKLIGHT
/* cliplight */
if ((pm_clip_left || pm_clip_right) &&
global_settings.cliplight &&
#if CONFIG_CODEC == SWCODEC
!pm_playback)
#else
!(audio_status() & (AUDIO_STATUS_PLAY | AUDIO_STATUS_ERROR)))
#endif
{
/* if clipping, cliplight setting on and in recording screen */
if (global_settings.cliplight <= 2)
{
/* turn on main unit light if setting set to main or both*/
backlight_on();
}
#ifdef HAVE_REMOTE_LCD
if (global_settings.cliplight >= 2)
{
/* turn remote light unit on if setting set to remote or both */
remote_backlight_on();
}
#endif /* HAVE_REMOTE_LCD */
}
#endif /* HAVE_BACKLIGHT */
if (trig_status != TRIG_OFF) {
int start_trigx, stop_trigx, ycenter;
display->set_drawmode(DRMODE_SOLID);
ycenter = y + height / 2;
/* display threshold value */
start_trigx = x+peak_meter_scale_value(trig_strt_threshold,meterwidth);
display->vline(start_trigx, ycenter - 2, ycenter);
start_trigx ++;
if (start_trigx < display->getwidth() ) display->drawpixel(start_trigx,
ycenter - 1);
stop_trigx = x + peak_meter_scale_value(trig_stp_threshold,meterwidth);
display->vline(stop_trigx, ycenter - 2, ycenter);
if (stop_trigx > 0) display->drawpixel(stop_trigx - 1, ycenter - 1);
}
#endif /*HAVE_RECORDING*/
#ifdef PM_DEBUG
/* display a bar to show how many calls to peak_meter_peek
have ocurred since the last display */
display->set_drawmode(DRMODE_COMPLEMENT);
display->fillrect(x, y, tmp, 3);
if (tmp < PEEKS_PER_DRAW_SIZE) {
peeks_per_redraw[tmp]++;
}
tmp = current_tick - pm_tick;
if (tmp < TICKS_PER_DRAW_SIZE ){
ticks_per_redraw[tmp] ++;
}
/* display a bar to show how many ticks have passed since
the last redraw */
display->fillrect(x, y + height / 2, current_tick - pm_tick, 2);
pm_tick = current_tick;
#endif
scales->last_left = left;
scales->last_right = right;
display->set_drawmode(DRMODE_SOLID);
}
#ifdef HAVE_RECORDING
/**
* Defines the parameters of the trigger. After these parameters are defined
* the trigger can be started either by peak_meter_attack_trigger or by
* peak_meter_release_trigger. Note that you can pass either linear (%) or
* logarithmic (db) values to the thresholds. Positive values are intepreted as
* percent (0 is 0% .. 100 is 100%). Negative values are interpreted as db.
* To avoid ambiguosity of the value 0 the negative values are shifted by -1.
* Thus -75 is -74db .. -1 is 0db.
* @param start_threshold - The threshold used for attack trigger. Negative
* values are interpreted as db -1, positive as %.
* @param start_duration - The minimum time span within which start_threshold
* must be exceeded to fire the attack trigger.
* @param start_dropout - The maximum time span the level may fall below
* start_threshold without releasing the attack trigger.
* @param stop_threshold - The threshold the volume must fall below to release
* the release trigger.Negative values are
* interpreted as db -1, positive as %.
* @param stop_hold - The minimum time the volume must fall below the
* stop_threshold to release the trigger.
* @param
*/
void peak_meter_define_trigger(
int start_threshold,
long start_duration,
long start_dropout,
int stop_threshold,
long stop_hold_time,
long restart_gap
)
{
if (start_threshold < 0) {
/* db */
if (start_threshold < -89) {
trig_strt_threshold = 0;
} else {
trig_strt_threshold =peak_meter_db2sample((start_threshold+1)*100);
}
} else {
/* linear percent */
trig_strt_threshold = start_threshold * MAX_PEAK / 100;
}
trig_strt_duration = start_duration;
trig_strt_dropout = start_dropout;
if (stop_threshold < 0) {
/* db */
trig_stp_threshold = peak_meter_db2sample((stop_threshold + 1) * 100);
} else {
/* linear percent */
trig_stp_threshold = stop_threshold * MAX_PEAK / 100;
}
trig_stp_hold = stop_hold_time;
trig_rstrt_gap = restart_gap;
}
/**
* Enables or disables the trigger.
* @param on - If true the trigger is turned on.
*/
void peak_meter_trigger(bool on)
{
/* don't use set_trigger here as that would fire an undesired event */
trig_status = on ? TRIG_READY : TRIG_OFF;
}
/**
* Registers the listener function that listenes on trig_status changes.
* @param listener - The function that is called with each change of
* trig_status. May be set to NULL if no callback is desired.
*/
void peak_meter_set_trigger_listener(void (*listener)(int status))
{
trigger_listener = listener;
}
/**
* Fetches the status of the trigger.
* TRIG_OFF: the trigger is inactive
* TRIG_RELEASED: The volume level is below the threshold
* TRIG_ACTIVATED: The volume level has exceeded the threshold, but the trigger
* hasn't been fired yet.
* TRIG_FIRED: The volume exceeds the threshold
*
* To activate the trigger call either peak_meter_attack_trigger or
* peak_meter_release_trigger. To turn the trigger off call
* peak_meter_trigger_off.
*/
int peak_meter_trigger_status(void)
{
return trig_status; /* & TRIG_PIT_MASK;*/
}
void peak_meter_draw_trig(int xpos[], int ypos[],
int trig_width[], int nb_screens)
{
int barstart[NB_SCREENS];
int barend[NB_SCREENS];
int icon;
int ixpos[NB_SCREENS];
int trigbar_width[NB_SCREENS];
FOR_NB_SCREENS(i)
trigbar_width[i] = (trig_width[i] - (2 * (ICON_PLAY_STATE_WIDTH + 1)));
switch (trig_status) {
case TRIG_READY:
FOR_NB_SCREENS(i){
barstart[i] = 0;
barend[i] = 0;
}
icon = Icon_Stop;
FOR_NB_SCREENS(i)
ixpos[i] = xpos[i];
break;
case TRIG_STEADY:
case TRIG_RETRIG:
FOR_NB_SCREENS(i)
{
barstart[i] = 0;
barend[i] = (trig_strt_duration == 0) ? trigbar_width[i] :
trigbar_width[i] *
(current_tick - trig_hightime) / trig_strt_duration;
}
icon = Icon_Stop;
FOR_NB_SCREENS(i)
ixpos[i] = xpos[i];
break;
case TRIG_GO:
case TRIG_CONTINUE:
FOR_NB_SCREENS(i)
{
barstart[i] = trigbar_width[i];
barend[i] = trigbar_width[i];
}
icon = Icon_Record;
FOR_NB_SCREENS(i)
ixpos[i] = xpos[i]+ trig_width[i] - ICON_PLAY_STATE_WIDTH;
break;
case TRIG_POSTREC:
FOR_NB_SCREENS(i)
{
barstart[i] = (trig_stp_hold == 0) ? 0 :
trigbar_width[i] - trigbar_width[i] *
(current_tick - trig_lowtime) / trig_stp_hold;
barend[i] = trigbar_width[i];
}
icon = Icon_Record;
FOR_NB_SCREENS(i)
ixpos[i] = xpos[i] + trig_width[i] - ICON_PLAY_STATE_WIDTH;
break;
default:
return;
}
for(int i = 0; i < nb_screens; i++)
{
gui_scrollbar_draw(&screens[i], xpos[i] + ICON_PLAY_STATE_WIDTH + 1,
ypos[i] + 1, trigbar_width[i], TRIG_HEIGHT - 2,
trigbar_width[i], barstart[i], barend[i],
HORIZONTAL);
screens[i].mono_bitmap(bitmap_icons_7x8[icon], ixpos[i], ypos[i],
ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT);
}
}
#endif
int peak_meter_draw_get_btn(int action_context, int x[], int y[],
int height[], int nb_screens,
struct viewport vps[])
{
int button = BUTTON_NONE;
long next_refresh = current_tick;
long next_big_refresh = current_tick + HZ / 10;
int i;
#if (CONFIG_CODEC == SWCODEC)
bool highperf = false;
#else
/* On MAS targets, we need to poll as often as possible in order to not
* miss a peak, as the MAS does only provide a quasi-peak. When the disk
* is active, it must not draw too much CPU power or a buffer overrun can
* happen when saving a recording. As a compromise, poll only once per tick
* when the disk is active, otherwise spin around as fast as possible. */
bool highperf = !storage_disk_is_active();
#endif
bool dopeek = true;
while (TIME_BEFORE(current_tick, next_big_refresh)) {
button = get_action(action_context, TIMEOUT_NOBLOCK);
if (button != BUTTON_NONE) {
break;
}
if (dopeek) { /* Peek only once per refresh when disk is */
peak_meter_peek(); /* spinning, but as often as possible */
dopeek = highperf; /* otherwise. */
yield();
} else {
sleep(0); /* Sleep until end of current tick. */
}
if (TIME_AFTER(current_tick, next_refresh)) {
for(i = 0; i < nb_screens; i++)
{
screens[i].set_viewport(&vps[i]);
peak_meter_screen(&screens[i], x[i], y[i], height[i]);
screens[i].update_viewport_rect(x[i], y[i],
screens[i].getwidth() - x[i],
height[i]);
}
next_refresh += HZ / PEAK_METER_FPS;
dopeek = true;
}
}
return button;
}
#ifdef PM_DEBUG
static void peak_meter_clear_histogram(void)
{
int i = 0;
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
ticks_per_redraw[i] = (unsigned int)0;
}
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
peeks_per_redraw[i] = (unsigned int)0;
}
}
bool peak_meter_histogram(void)
{
int i;
int btn = BUTTON_NONE;
while ((btn & BUTTON_OFF) != BUTTON_OFF )
{
unsigned int max = 0;
int y = 0;
int x = 0;
screens[0].clear_display();
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
max = MAX(max, peeks_per_redraw[i]);
}
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
x = peeks_per_redraw[i] * (LCD_WIDTH - 1)/ max;
screens[0].hline(0, x, y + i);
}
y = PEEKS_PER_DRAW_SIZE + 1;
max = 0;
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
max = MAX(max, ticks_per_redraw[i]);
}
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
x = ticks_per_redraw[i] * (LCD_WIDTH - 1)/ max;
screens[0].hline(0, x, y + i);
}
screens[0].update();
btn = button_get(true);
if (btn == BUTTON_PLAY) {
peak_meter_clear_histogram();
}
}
return false;
}
#endif
#ifdef HAVE_HISTOGRAM
void histogram_init()
{
/* get update interval, clear buffer, reset drawing position */
memset(history_l, 0, sizeof(unsigned char)*HIST_BUF_SIZE);
memset(history_r, 0, sizeof(unsigned char)*HIST_BUF_SIZE);
next_histogram_update = current_tick +
(global_settings.histogram_interval * HZ);
}
void histogram_draw(int x1, int x2, int y1, int y2, int width, int height)
{
int i, j;
if (current_tick >= next_histogram_update)
{
/* fill history buffer */
history_l[history_pos] = hist_l * height / 32767;
history_r[history_pos] = hist_r * height / 32767;
history_pos = (history_pos + 1) % HIST_BUF_SIZE;
history_l[history_pos] = history_r[history_pos] = 0;
history_l[(history_pos + 1) % HIST_BUF_SIZE] = 0;
history_r[(history_pos + 1) % HIST_BUF_SIZE] = 0;
hist_l = 0;
hist_r = 0;
next_histogram_update = current_tick +
(global_settings.histogram_interval * HZ);
}
lcd_set_drawmode(DRMODE_SOLID);
lcd_drawrect(x1, y1, width, height);
lcd_drawrect(x2, y2, width, height);
lcd_set_drawmode(DRMODE_FG);
j = history_pos;
for (i = width-2; i >= 0; i--)
{
j--;
if(j<0)
j = HIST_BUF_SIZE-1;
if (history_l[j])
{
if (history_l[j] == height)
lcd_set_foreground(LCD_HIST_OVER);
#ifdef HAVE_LCD_COLOR
else if (history_l[j] > hist_level_marks[1])
lcd_set_foreground(LCD_HIST_HI);
#endif
else
lcd_set_foreground(LCD_HIST_OK);
lcd_vline(x1 + i, y1 + height - 2, y1 + height - history_l[j]);
}
if (history_r[j])
{
if (history_r[j] == height)
lcd_set_foreground(LCD_HIST_OVER);
#ifdef HAVE_LCD_COLOR
else if (history_r[j] > hist_level_marks[1])
lcd_set_foreground(LCD_HIST_HI);
#endif
else
lcd_set_foreground(LCD_HIST_OK);
lcd_vline(x2 + i, y2 + height - 2, y2 + height - history_r[j]);
}
}
lcd_set_foreground(
#ifdef HAVE_LCD_COLOR
global_settings.fg_color);
#else
LCD_DEFAULT_FG);
#endif
}
#endif /* HAVE_HISTOGRAM */