Use pre-multiplication in scaler to save one multiply per color component on ARM and Coldfire, at the cost of an extra add/shift in the horizontal scaler to reduce values to a workable range. SH-1 retains the same basic math, as
the use of 16x16->32 hardware multiplication in the earlier scaler stages saves more than removing the 32x32->40 multiply to descale output.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21091 a1c6a512-1295-4272-9138-f99709370657
diff --git a/apps/plugins/bench_scaler.c b/apps/plugins/bench_scaler.c
index c24807d..246271d 100644
--- a/apps/plugins/bench_scaler.c
+++ b/apps/plugins/bench_scaler.c
@@ -49,8 +49,8 @@
#else
uint32_t *lim = in + ctx->bm->width;
#endif
- for (; in < lim; in++)
- output = SC_MUL(*in + ctx->round, ctx->divisor);
+ while (in < lim)
+ output = SC_OUT(*in++, ctx);
return;
}
diff --git a/apps/plugins/lib/grey_draw.c b/apps/plugins/lib/grey_draw.c
index 6315ad9..c1e6376 100644
--- a/apps/plugins/lib/grey_draw.c
+++ b/apps/plugins/lib/grey_draw.c
@@ -733,7 +733,7 @@
uint32_t *qp = (uint32_t*)row_in;
uint8_t *dest = (uint8_t*)ctx->bm->data + ctx->bm->width * row;
for (col = 0; col < ctx->bm->width; col++)
- *dest++ = SC_MUL((*qp++) + ctx->round,ctx->divisor);
+ *dest++ = SC_OUT(*qp++, ctx);
}
static unsigned int get_size_grey(struct bitmap *bm)
diff --git a/apps/plugins/pictureflow/pictureflow.c b/apps/plugins/pictureflow/pictureflow.c
index a1ad3d2..bbe2541 100644
--- a/apps/plugins/pictureflow/pictureflow.c
+++ b/apps/plugins/pictureflow/pictureflow.c
@@ -592,25 +592,12 @@
return fsin(iangle + (IANGLE_MAX >> 2));
}
-static inline uint32_t div255(uint32_t val)
+static inline unsigned scale_val(unsigned val, unsigned bits)
{
- return ((((val >> 8) + val) >> 8) + val) >> 8;
+ val = val * ((1 << bits) - 1);
+ return ((val >> 8) + val + 128) >> 8;
}
-#define SCALE_VAL(val,out) div255((val) * (out) + 127)
-#define SCALE_VAL32(val, out) \
-({ \
- uint32_t val__ = (val) * (out); \
- val__ = ((((val__ >> 8) + val__) >> 8) + val__ + 128) >> 8; \
- val__; \
-})
-#define SCALE_VAL8(val, out) \
-({ \
- unsigned val__ = (val) * (out); \
- val__ = ((val__ >> 8) + val__ + 128) >> 8; \
- val__; \
-})
-
static void output_row_8_transposed(uint32_t row, void * row_in,
struct scaler_context *ctx)
{
@@ -625,9 +612,9 @@
unsigned r, g, b;
for (; dest < end; dest += ctx->bm->height)
{
- r = SCALE_VAL8(qp->red, 31);
- g = SCALE_VAL8(qp->green, 63);
- b = SCALE_VAL8((qp++)->blue, 31);
+ r = scale_val(qp->red, 5);
+ g = scale_val(qp->green, 6);
+ b = scale_val((qp++)->blue, 5);
*dest = LCD_RGBPACK_LCD(r,g,b);
}
#endif
@@ -641,19 +628,15 @@
#ifdef USEGSLIB
uint32_t *qp = (uint32_t*)row_in;
for (; dest < end; dest += ctx->bm->height)
- *dest = SC_MUL((*qp++) + ctx->round, ctx->divisor);
+ *dest = SC_OUT(*qp++, ctx);
#else
struct uint32_rgb *qp = (struct uint32_rgb*)row_in;
- uint32_t rb_mul = SCALE_VAL32(ctx->divisor, 31),
- rb_rnd = SCALE_VAL32(ctx->round, 31),
- g_mul = SCALE_VAL32(ctx->divisor, 63),
- g_rnd = SCALE_VAL32(ctx->round, 63);
int r, g, b;
for (; dest < end; dest += ctx->bm->height)
{
- r = SC_MUL(qp->r + rb_rnd, rb_mul);
- g = SC_MUL(qp->g + g_rnd, g_mul);
- b = SC_MUL(qp->b + rb_rnd, rb_mul);
+ r = scale_val(SC_OUT(qp->r, ctx), 5);
+ g = scale_val(SC_OUT(qp->g, ctx), 6);
+ b = scale_val(SC_OUT(qp->b, ctx), 5);
qp++;
*dest = LCD_RGBPACK_LCD(r,g,b);
}
@@ -670,14 +653,14 @@
for (; dest < end; dest += ctx->bm->height)
{
unsigned r, g, b, y, u, v;
- y = SC_MUL(qp->b + ctx->round, ctx->divisor);
- u = SC_MUL(qp->g + ctx->round, ctx->divisor);
- v = SC_MUL(qp->r + ctx->round, ctx->divisor);
+ y = SC_OUT(qp->b, ctx);
+ u = SC_OUT(qp->g, ctx);
+ v = SC_OUT(qp->r, ctx);
qp++;
yuv_to_rgb(y, u, v, &r, &g, &b);
- r = (31 * r + (r >> 3) + 127) >> 8;
- g = (63 * g + (g >> 2) + 127) >> 8;
- b = (31 * b + (b >> 3) + 127) >> 8;
+ r = scale_val(r, 5);
+ g = scale_val(g, 6);
+ b = scale_val(b, 5);
*dest = LCD_RGBPACK_LCD(r, g, b);
}
}
diff --git a/apps/recorder/resize.c b/apps/recorder/resize.c
index 1e9210e..3a0ad8d 100644
--- a/apps/recorder/resize.c
+++ b/apps/recorder/resize.c
@@ -131,20 +131,45 @@
return false; \
}
-/* Set up rounding and scale factors for horizontal area scaler */
-static inline void scale_h_area_setup(struct scaler_context *ctx)
+#if defined(CPU_COLDFIRE)
+#define MAC(op1, op2, num) \
+ asm volatile( \
+ "mac.l %0, %1, %%acc" #num \
+ : \
+ : "%d" (op1), "d" (op2)\
+ )
+#define MAC_OUT(dest, num) \
+ asm volatile( \
+ "movclr.l %%acc" #num ", %0" \
+ : "=d" (dest) \
+ )
+#elif defined(CPU_SH)
+/* calculate the 32-bit product of unsigned 16-bit op1 and op2 */
+static inline int32_t mul_s16_s16(int16_t op1, int16_t op2)
{
-/* sum is output value * src->width */
- SDEBUGF("scale_h_area_setup\n");
- ctx->divisor = ctx->src->width;
+ return (int32_t)(op1 * op2);
}
+/* calculate the 32-bit product of signed 16-bit op1 and op2 */
+static inline uint32_t mul_u16_u16(uint16_t op1, uint16_t op2)
+{
+ return (uint32_t)(op1 * op2);
+}
+#endif
+
/* horizontal area average scaler */
static bool scale_h_area(void *out_line_ptr,
struct scaler_context *ctx, bool accum)
{
SDEBUGF("scale_h_area\n");
unsigned int ix, ox, oxe, mul;
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ const uint32_t h_i_val = ctx->src->width,
+ h_o_val = ctx->bm->width;
+#else
+ const uint32_t h_i_val = ctx->h_i_val,
+ h_o_val = ctx->h_o_val;
+#endif
#ifdef HAVE_LCD_COLOR
struct uint32_rgb rgbvalacc = { 0, 0, 0 },
rgbvaltmp = { 0, 0, 0 },
@@ -161,31 +186,57 @@
yield();
for (ix = 0; ix < (unsigned int)ctx->src->width; ix++)
{
- oxe += ctx->bm->width;
+ oxe += h_o_val;
/* end of current area has been reached */
/* fill buffer if needed */
FILL_BUF(part,ctx->store_part,ctx->args);
#ifdef HAVE_LCD_COLOR
- if (oxe >= (unsigned int)ctx->src->width)
+ if (oxe >= h_i_val)
{
/* "reset" error, which now represents partial coverage of next
pixel by the next area
*/
- oxe -= ctx->src->width;
+ oxe -= h_i_val;
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
/* add saved partial pixel from start of area */
- rgbvalacc.r = rgbvalacc.r * ctx->bm->width + rgbvaltmp.r * mul;
- rgbvalacc.g = rgbvalacc.g * ctx->bm->width + rgbvaltmp.g * mul;
- rgbvalacc.b = rgbvalacc.b * ctx->bm->width + rgbvaltmp.b * mul;
+ MAC(rgbvalacc.r, h_o_val, 0);
+ MAC(rgbvalacc.g, h_o_val, 1);
+ MAC(rgbvalacc.b, h_o_val, 2);
+ MAC(rgbvaltmp.r, mul, 0);
+ MAC(rgbvaltmp.g, mul, 1);
+ MAC(rgbvaltmp.b, mul, 2);
+ /* get new pixel , then add its partial coverage to this area */
+ mul = h_o_val - oxe;
+ rgbvaltmp.r = part->buf->red;
+ rgbvaltmp.g = part->buf->green;
+ rgbvaltmp.b = part->buf->blue;
+ MAC(rgbvaltmp.r, mul, 0);
+ MAC(rgbvaltmp.g, mul, 1);
+ MAC(rgbvaltmp.b, mul, 2);
+ MAC_OUT(rgbvalacc.r, 0);
+ MAC_OUT(rgbvalacc.g, 1);
+ MAC_OUT(rgbvalacc.b, 2);
+#else
+/* generic C math */
+ /* add saved partial pixel from start of area */
+ rgbvalacc.r = rgbvalacc.r * h_o_val + rgbvaltmp.r * mul;
+ rgbvalacc.g = rgbvalacc.g * h_o_val + rgbvaltmp.g * mul;
+ rgbvalacc.b = rgbvalacc.b * h_o_val + rgbvaltmp.b * mul;
/* get new pixel , then add its partial coverage to this area */
rgbvaltmp.r = part->buf->red;
rgbvaltmp.g = part->buf->green;
rgbvaltmp.b = part->buf->blue;
- mul = ctx->bm->width - oxe;
+ mul = h_o_val - oxe;
rgbvalacc.r += rgbvaltmp.r * mul;
rgbvalacc.g += rgbvaltmp.g * mul;
rgbvalacc.b += rgbvaltmp.b * mul;
+#endif /* CPU */
+ rgbvalacc.r = (rgbvalacc.r + (1 << 21)) >> 22;
+ rgbvalacc.g = (rgbvalacc.g + (1 << 21)) >> 22;
+ rgbvalacc.b = (rgbvalacc.b + (1 << 21)) >> 22;
/* store or accumulate to output row */
if (accum)
{
@@ -200,7 +251,7 @@
rgbvalacc.r = 0;
rgbvalacc.g = 0;
rgbvalacc.b = 0;
- mul = ctx->bm->width - mul;
+ mul = oxe;
ox += 1;
/* inside an area */
} else {
@@ -210,21 +261,45 @@
rgbvalacc.b += part->buf->blue;
}
#else
- if (oxe >= (unsigned int)ctx->src->width)
+ if (oxe >= h_i_val)
{
/* "reset" error, which now represents partial coverage of next
pixel by the next area
*/
- oxe -= ctx->src->width;
-
+ oxe -= h_i_val;
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
/* add saved partial pixel from start of area */
- acc = MULUQ(acc, ctx->bm->width) + MULUQ(tmp, mul);
+ MAC(acc, h_o_val, 0);
+ MAC(tmp, mul, 0);
+ /* get new pixel , then add its partial coverage to this area */
+ tmp = *(part->buf);
+ mul = h_o_val - oxe;
+ MAC(tmp, mul, 0);
+ MAC_OUT(acc, 0);
+#elif defined(CPU_SH)
+/* SH-1 16x16->32 math */
+ /* add saved partial pixel from start of area */
+ acc = mul_u16_u16(acc, h_o_val) + mul_u16_u16(tmp, mul);
/* get new pixel , then add its partial coverage to this area */
tmp = *(part->buf);
- mul = ctx->bm->width - oxe;
- acc += MULUQ(tmp, mul);
+ mul = h_o_val - oxe;
+ acc += mul_u16_u16(tmp, mul);
+#else
+/* generic C math */
+ /* add saved partial pixel from start of area */
+ acc = (acc * h_o_val) + (tmp * mul);
+
+ /* get new pixel , then add its partial coverage to this area */
+ tmp = *(part->buf);
+ mul = h_o_val - oxe;
+ acc += tmp * mul;
+#endif /* CPU */
+#if !(defined(CPU_SH) || defined(TEST_SH_MATH))
/* round, divide, and either store or accumulate to output row */
+ acc = (acc + (1 << 21)) >> 22;
+#endif
if (accum)
{
acc += out_line[ox];
@@ -232,7 +307,7 @@
out_line[ox] = acc;
/* reset accumulator */
acc = 0;
- mul = ctx->bm->width - mul;
+ mul = oxe;
ox += 1;
/* inside an area */
} else {
@@ -249,56 +324,56 @@
/* vertical area average scaler */
static inline bool scale_v_area(struct rowset *rset, struct scaler_context *ctx)
{
- uint32_t mul, x, oy, iy, oye;
+ uint32_t mul, oy, iy, oye;
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ const uint32_t v_i_val = ctx->src->height,
+ v_o_val = ctx->bm->height;
+#else
+ const uint32_t v_i_val = ctx->v_i_val,
+ v_o_val = ctx->v_o_val;
+#endif
/* Set up rounding and scale factors */
- ctx->divisor *= ctx->src->height;
- ctx->round = ctx->divisor >> 1;
- ctx->divisor = 1 + (-((ctx->divisor + 1) >> 1)) / ctx->divisor;
mul = 0;
oy = rset->rowstart;
oye = 0;
#ifdef HAVE_LCD_COLOR
uint32_t *rowacc = (uint32_t *) ctx->buf,
- *rowtmp = rowacc + 3 * ctx->bm->width;
+ *rowtmp = rowacc + 3 * ctx->bm->width,
+ *rowacc_px, *rowtmp_px;
memset((void *)ctx->buf, 0, ctx->bm->width * 2 * sizeof(struct uint32_rgb));
#else
uint32_t *rowacc = (uint32_t *) ctx->buf,
- *rowtmp = rowacc + ctx->bm->width;
+ *rowtmp = rowacc + ctx->bm->width,
+ *rowacc_px, *rowtmp_px;
memset((void *)ctx->buf, 0, ctx->bm->width * 2 * sizeof(uint32_t));
#endif
SDEBUGF("scale_v_area\n");
/* zero the accumulator and temp rows */
for (iy = 0; iy < (unsigned int)ctx->src->height; iy++)
{
- oye += ctx->bm->height;
+ oye += v_o_val;
/* end of current area has been reached */
- if (oye >= (unsigned int)ctx->src->height)
+ if (oye >= v_i_val)
{
/* "reset" error, which now represents partial coverage of the next
row by the next area
*/
- oye -= ctx->src->height;
+ oye -= v_i_val;
/* add stored partial row to accumulator */
-#ifdef HAVE_LCD_COLOR
- for (x = 0; x < 3 * (unsigned int)ctx->bm->width; x++)
-#else
- for (x = 0; x < (unsigned int)ctx->bm->width; x++)
-#endif
- rowacc[x] = rowacc[x] * ctx->bm->height + mul * rowtmp[x];
+ for(rowacc_px = rowacc, rowtmp_px = rowtmp; rowacc_px != rowtmp;
+ rowacc_px++, rowtmp_px++)
+ *rowacc_px = *rowacc_px * v_o_val + *rowtmp_px * mul;
/* store new scaled row in temp row */
if(!ctx->h_scaler(rowtmp, ctx, false))
return false;
/* add partial coverage by new row to this area, then round and
scale to final value
*/
- mul = ctx->bm->height - oye;
-#ifdef HAVE_LCD_COLOR
- for (x = 0; x < 3 * (unsigned int)ctx->bm->width; x++)
-#else
- for (x = 0; x < (unsigned int)ctx->bm->width; x++)
-#endif
- rowacc[x] += mul * rowtmp[x];
+ mul = v_o_val - oye;
+ for(rowacc_px = rowacc, rowtmp_px = rowtmp; rowacc_px != rowtmp;
+ rowacc_px++, rowtmp_px++)
+ *rowacc_px += mul * *rowtmp_px;
ctx->output_row(oy, (void*)rowacc, ctx);
/* clear accumulator row, store partial coverage for next row */
#ifdef HAVE_LCD_COLOR
@@ -319,20 +394,18 @@
}
#ifdef HAVE_UPSCALER
-/* Set up rounding and scale factors for the horizontal scaler. The divisor
- is bm->width - 1, so that the first and last pixels in the row align
- exactly between input and output
-*/
-static inline void scale_h_linear_setup(struct scaler_context *ctx)
-{
- ctx->divisor = ctx->bm->width - 1;
-}
-
/* horizontal linear scaler */
static bool scale_h_linear(void *out_line_ptr, struct scaler_context *ctx,
bool accum)
{
unsigned int ix, ox, ixe;
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ const uint32_t h_i_val = ctx->src->width - 1,
+ h_o_val = ctx->bm->width - 1;
+#else
+ const uint32_t h_i_val = ctx->h_i_val,
+ h_o_val = ctx->h_o_val;
+#endif
/* type x = x is an ugly hack for hiding an unitialized data warning. The
values are conditionally initialized before use, but other values are
set such that this will occur before these are used.
@@ -348,27 +421,35 @@
FILL_BUF_INIT(part,ctx->store_part,ctx->args);
ix = 0;
/* The error is set so that values are initialized on the first pass. */
- ixe = ctx->bm->width - 1;
+ ixe = h_o_val;
/* give other tasks a chance to run */
yield();
for (ox = 0; ox < (uint32_t)ctx->bm->width; ox++)
{
#ifdef HAVE_LCD_COLOR
- if (ixe >= ((uint32_t)ctx->bm->width - 1))
+ if (ixe >= h_o_val)
{
/* Store the new "current" pixel value in rgbval, and the color
step value in rgbinc.
*/
- ixe -= (ctx->bm->width - 1);
+ ixe -= h_o_val;
rgbinc.r = -(part->buf->red);
rgbinc.g = -(part->buf->green);
rgbinc.b = -(part->buf->blue);
- rgbval.r = (part->buf->red) * (ctx->bm->width - 1);
- rgbval.g = (part->buf->green) * (ctx->bm->width - 1);
- rgbval.b = (part->buf->blue) * (ctx->bm->width - 1);
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
+ MAC(part->buf->red, h_o_val, 0);
+ MAC(part->buf->green, h_o_val, 1);
+ MAC(part->buf->blue, h_o_val, 2);
+#else
+/* generic C math */
+ rgbval.r = (part->buf->red) * h_o_val;
+ rgbval.g = (part->buf->green) * h_o_val;
+ rgbval.b = (part->buf->blue) * h_o_val;
+#endif /* CPU */
ix += 1;
/* If this wasn't the last pixel, add the next one to rgbinc. */
- if (ix < (uint32_t)ctx->src->width) {
+ if (LIKELY(ix < (uint32_t)ctx->src->width)) {
part->buf++;
part->len--;
/* Fetch new pixels if needed */
@@ -379,14 +460,28 @@
/* Add a partial step to rgbval, in this pixel isn't precisely
aligned with the new source pixel
*/
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
+ MAC(rgbinc.r, ixe, 0);
+ MAC(rgbinc.g, ixe, 1);
+ MAC(rgbinc.b, ixe, 2);
+#else
+/* generic C math */
rgbval.r += rgbinc.r * ixe;
rgbval.g += rgbinc.g * ixe;
rgbval.b += rgbinc.b * ixe;
+#endif
}
- /* Now multiple the color increment to its proper value */
- rgbinc.r *= ctx->src->width - 1;
- rgbinc.g *= ctx->src->width - 1;
- rgbinc.b *= ctx->src->width - 1;
+#if defined(CPU_COLDFIRE)
+/* get final EMAC result out of ACC registers */
+ MAC_OUT(rgbval.r, 0);
+ MAC_OUT(rgbval.g, 1);
+ MAC_OUT(rgbval.b, 2);
+#endif
+ /* Now multiply the color increment to its proper value */
+ rgbinc.r *= h_i_val;
+ rgbinc.g *= h_i_val;
+ rgbinc.b *= h_i_val;
} else {
rgbval.r += rgbinc.r;
rgbval.g += rgbinc.g;
@@ -395,27 +490,36 @@
/* round and scale values, and accumulate or store to output */
if (accum)
{
- out_line[ox].r += rgbval.r;
- out_line[ox].g += rgbval.g;
- out_line[ox].b += rgbval.b;
+ out_line[ox].r += (rgbval.r + (1 << 21)) >> 22;
+ out_line[ox].g += (rgbval.g + (1 << 21)) >> 22;
+ out_line[ox].b += (rgbval.b + (1 << 21)) >> 22;
} else {
- out_line[ox].r = rgbval.r;
- out_line[ox].g = rgbval.g;
- out_line[ox].b = rgbval.b;
+ out_line[ox].r = (rgbval.r + (1 << 21)) >> 22;
+ out_line[ox].g = (rgbval.g + (1 << 21)) >> 22;
+ out_line[ox].b = (rgbval.b + (1 << 21)) >> 22;
}
#else
- if (ixe >= ((uint32_t)ctx->bm->width - 1))
+ if (ixe >= h_o_val)
{
/* Store the new "current" pixel value in rgbval, and the color
step value in rgbinc.
*/
- ixe -= (ctx->bm->width - 1);
+ ixe -= h_o_val;
val = *(part->buf);
inc = -val;
- val = MULUQ(val, ctx->bm->width - 1);
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
+ MAC(val, h_o_val, 0);
+#elif defined(CPU_SH)
+/* SH-1 16x16->32 math */
+ val = mul_u16_u16(val, h_o_val);
+#else
+/* generic C math */
+ val = val * h_o_val;
+#endif
ix += 1;
/* If this wasn't the last pixel, add the next one to rgbinc. */
- if (ix < (uint32_t)ctx->src->width) {
+ if (LIKELY(ix < (uint32_t)ctx->src->width)) {
part->buf++;
part->len--;
/* Fetch new pixels if needed */
@@ -424,12 +528,40 @@
/* Add a partial step to rgbval, in this pixel isn't precisely
aligned with the new source pixel
*/
- val += MULQ(inc, ixe);
+#if defined(CPU_COLDFIRE)
+/* Coldfire EMAC math */
+ MAC(inc, ixe, 0);
+#elif defined(CPU_SH)
+/* SH-1 16x16->32 math */
+ val += mul_s16_s16(inc, ixe);
+#else
+/* generic C math */
+ val += inc * ixe;
+#endif
}
+#if defined(CPU_COLDFIRE)
+/* get final EMAC result out of ACC register */
+ MAC_OUT(val, 0);
+#endif
/* Now multiply the color increment to its proper value */
- inc = MULQ(inc, ctx->src->width - 1);
+#if defined(CPU_SH)
+/* SH-1 16x16->32 math */
+ inc = mul_s16_s16(inc, h_i_val);
+#else
+/* generic C math */
+ inc *= h_i_val;
+#endif
} else
val += inc;
+#if !(defined(CPU_SH) || defined(TEST_SH_MATH))
+ /* round and scale values, and accumulate or store to output */
+ if (accum)
+ {
+ out_line[ox] += (val + (1 << 21)) >> 22;
+ } else {
+ out_line[ox] = (val + (1 << 21)) >> 22;
+ }
+#else
/* round and scale values, and accumulate or store to output */
if (accum)
{
@@ -438,7 +570,8 @@
out_line[ox] = val;
}
#endif
- ixe += ctx->src->width - 1;
+#endif
+ ixe += h_i_val;
}
return true;
}
@@ -447,71 +580,66 @@
static inline bool scale_v_linear(struct rowset *rset,
struct scaler_context *ctx)
{
- uint32_t mul, x, iy, iye;
+ uint32_t mul, iy, iye;
int32_t oy;
- /* Set up scale and rounding factors, the divisor is bm->height - 1 */
- ctx->divisor *= (ctx->bm->height - 1);
- ctx->round = ctx->divisor >> 1;
- ctx->divisor = 1 + (-((ctx->divisor + 1) >> 1)) / ctx->divisor;
- /* Set up our two temp buffers. The names are generic because they'll be
- swapped each time a new input row is read
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ const uint32_t v_i_val = ctx->src->height - 1,
+ v_o_val = ctx->bm->height - 1;
+#else
+ const uint32_t v_i_val = ctx->v_i_val,
+ v_o_val = ctx->v_o_val;
+#endif
+ /* Set up our buffers, to store the increment and current value for each
+ column, and one temp buffer used to read in new rows.
*/
#ifdef HAVE_LCD_COLOR
uint32_t *rowinc = (uint32_t *)(ctx->buf),
*rowval = rowinc + 3 * ctx->bm->width,
- *rowtmp = rowval + 3 * ctx->bm->width;
+ *rowtmp = rowval + 3 * ctx->bm->width,
#else
uint32_t *rowinc = (uint32_t *)(ctx->buf),
*rowval = rowinc + ctx->bm->width,
- *rowtmp = rowval + ctx->bm->width;
+ *rowtmp = rowval + ctx->bm->width,
#endif
+ *rowinc_px, *rowval_px, *rowtmp_px;
SDEBUGF("scale_v_linear\n");
mul = 0;
iy = 0;
- iye = ctx->bm->height - 1;
+ iye = v_o_val;
/* get first scaled row in rowtmp */
if(!ctx->h_scaler((void*)rowtmp, ctx, false))
return false;
for (oy = rset->rowstart; oy != rset->rowstop; oy += rset->rowstep)
{
- if (iye >= (uint32_t)ctx->bm->height - 1)
+ if (iye >= v_o_val)
{
- iye -= ctx->bm->height - 1;
+ iye -= v_o_val;
iy += 1;
-#ifdef HAVE_LCD_COLOR
- for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++)
-#else
- for (x = 0; x < (uint32_t)ctx->bm->width; x++)
-#endif
+ for(rowinc_px = rowinc, rowtmp_px = rowtmp, rowval_px = rowval;
+ rowinc_px < rowval; rowinc_px++, rowtmp_px++, rowval_px++)
{
- rowinc[x] = -rowtmp[x];
- rowval[x] = rowtmp[x] * (ctx->bm->height - 1);
+ *rowinc_px = -*rowtmp_px;
+ *rowval_px = *rowtmp_px * v_o_val;
}
if (iy < (uint32_t)ctx->src->height)
{
if (!ctx->h_scaler((void*)rowtmp, ctx, false))
return false;
-#ifdef HAVE_LCD_COLOR
- for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++)
-#else
- for (x = 0; x < (uint32_t)ctx->bm->width; x++)
-#endif
+ for(rowinc_px = rowinc, rowtmp_px = rowtmp, rowval_px = rowval;
+ rowinc_px < rowval; rowinc_px++, rowtmp_px++, rowval_px++)
{
- rowinc[x] += rowtmp[x];
- rowval[x] += rowinc[x] * iye;
- rowinc[x] *= ctx->src->height - 1;
+ *rowinc_px += *rowtmp_px;
+ *rowval_px += *rowinc_px * iye;
+ *rowinc_px *= v_i_val;
}
}
} else
-#ifdef HAVE_LCD_COLOR
- for (x = 0; x < 3 * (uint32_t)ctx->bm->width; x++)
-#else
- for (x = 0; x < (uint32_t)ctx->bm->width; x++)
-#endif
- rowval[x] += rowinc[x];
+ for(rowinc_px = rowinc, rowval_px = rowval; rowinc_px < rowval;
+ rowinc_px++, rowval_px++)
+ *rowval_px += *rowinc_px;
ctx->output_row(oy, (void*)rowval, ctx);
- iye += ctx->src->height - 1;
+ iye += v_i_val;
}
return true;
}
@@ -533,9 +661,9 @@
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
- y = SC_MUL(qp->b + ctx->round, ctx->divisor);
- u = SC_MUL(qp->g + ctx->round, ctx->divisor);
- v = SC_MUL(qp->r + ctx->round, ctx->divisor);
+ y = SC_OUT(qp->b, ctx);
+ u = SC_OUT(qp->g, ctx);
+ v = SC_OUT(qp->r, ctx);
qp++;
yuv_to_rgb(y, u, v, &r, &g, &b);
r = (31 * r + (r >> 3) + delta) >> 8;
@@ -571,7 +699,7 @@
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
- bright = SC_MUL((*qp++) + ctx->round,ctx->divisor);
+ bright = SC_OUT(*qp++, ctx);
bright = (3 * bright + (bright >> 6) + delta) >> 8;
data |= (~bright & 3) << shift;
shift -= 2;
@@ -594,7 +722,7 @@
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
- bright = SC_MUL((*qp++) + ctx->round, ctx->divisor);
+ bright = SC_OUT(*qp++, ctx);
bright = (3 * bright + (bright >> 6) + delta) >> 8;
*dest++ |= (~bright & 3) << shift;
}
@@ -609,7 +737,7 @@
for (col = 0; col < ctx->bm->width; col++) {
if (ctx->dither)
delta = DITHERXDY(col,dy);
- bright = SC_MUL((*qp++) + ctx->round, ctx->divisor);
+ bright = SC_OUT(*qp++, ctx);
bright = (3 * bright + (bright >> 6) + delta) >> 8;
*dest++ |= vi_pattern[bright] << shift;
}
@@ -625,9 +753,9 @@
if (ctx->dither)
delta = DITHERXDY(col,dy);
q0 = *qp++;
- r = SC_MUL(q0.r + ctx->round, ctx->divisor);
- g = SC_MUL(q0.g + ctx->round, ctx->divisor);
- b = SC_MUL(q0.b + ctx->round, ctx->divisor);
+ r = SC_OUT(q0.r, ctx);
+ g = SC_OUT(q0.g, ctx);
+ b = SC_OUT(q0.b, ctx);
r = (31 * r + (r >> 3) + delta) >> 8;
g = (63 * g + (g >> 2) + delta) >> 8;
b = (31 * b + (b >> 3) + delta) >> 8;
@@ -664,13 +792,10 @@
struct img_part* (*store_part)(void *args),
void *args)
{
-
-#ifdef HAVE_UPSCALER
const int sw = src->width;
const int sh = src->height;
const int dw = bm->width;
const int dh = bm->height;
-#endif
int ret;
#ifdef HAVE_LCD_COLOR
unsigned int needed = sizeof(struct uint32_rgb) * 3 * bm->width;
@@ -721,6 +846,9 @@
ctx.bm = bm;
ctx.src = src;
ctx.dither = dither;
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ uint32_t div;
+#endif
#if !defined(PLUGIN)
#if defined(HAVE_LCD_COLOR) && defined(HAVE_JPEG)
ctx.output_row = format_index ? output_row_32_native_fromyuv
@@ -740,23 +868,56 @@
{
#endif
ctx.h_scaler = scale_h_area;
- scale_h_area_setup(&ctx);
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ div = sw;
+#else
+ uint32_t h_div = (1U << 24) / sw;
+ ctx.h_i_val = sw * h_div;
+ ctx.h_o_val = dw * h_div;
+#endif
#ifdef HAVE_UPSCALER
} else {
ctx.h_scaler = scale_h_linear;
- scale_h_linear_setup(&ctx);
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ div = dw - 1;
+#else
+ uint32_t h_div = (1U << 24) / (dw - 1);
+ ctx.h_i_val = (sw - 1) * h_div;
+ ctx.h_o_val = (dw - 1) * h_div;
+#endif
}
#endif
- SC_MUL_INIT;
+#ifdef CPU_COLDFIRE
+ coldfire_set_macsr(EMAC_UNSIGNED);
+#endif
#ifdef HAVE_UPSCALER
if (sh > dh)
#endif
+ {
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ div *= sh;
+ ctx.recip = ((uint32_t)(-div)) / div + 1;
+#else
+ uint32_t v_div = (1U << 22) / sh;
+ ctx.v_i_val = sh * v_div;
+ ctx.v_o_val = dh * v_div;
+#endif
ret = scale_v_area(rset, &ctx);
+ }
#ifdef HAVE_UPSCALER
else
- ret = scale_v_linear(rset, &ctx);
+ {
+#if defined(CPU_SH) || defined (TEST_SH_MATH)
+ div *= dh - 1;
+ ctx.recip = ((uint32_t)(-div)) / div + 1;
+#else
+ uint32_t v_div = (1U << 22) / dh;
+ ctx.v_i_val = (sh - 1) * v_div;
+ ctx.v_o_val = (dh - 1) * v_div;
#endif
- SC_MUL_END;
+ ret = scale_v_linear(rset, &ctx);
+ }
+#endif
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
cpu_boost(false);
#endif
diff --git a/apps/recorder/resize.h b/apps/recorder/resize.h
index 2964fcd..ef32066 100644
--- a/apps/recorder/resize.h
+++ b/apps/recorder/resize.h
@@ -43,67 +43,61 @@
#define MAX_SC_STACK_ALLOC 0
#define HAVE_UPSCALER 1
-#if defined(CPU_COLDFIRE)
-#define SC_MUL_INIT \
- unsigned long macsr_st = coldfire_get_macsr(); \
- coldfire_set_macsr(EMAC_UNSIGNED);
-#define SC_MUL_END coldfire_set_macsr(macsr_st);
-#define SC_MUL(x, y) \
-({ \
- unsigned long t; \
- asm ("mac.l %[a], %[b], %%acc0\n\t" \
- "move.l %%accext01, %[t]\n\t" \
- "move.l #0, %%acc0\n\t" \
- : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
- t; \
-})
-#elif (CONFIG_CPU == SH7034)
-/* multiply two unsigned 32 bit values and return the top 32 bit
- * of the 64 bit result */
-static inline unsigned sc_mul32(unsigned a, unsigned b)
+#if defined(CPU_SH)
+/* perform 32x32->40 unsigned multiply, round off and return top 8 bits */
+static inline uint32_t sc_mul_u32_rnd(uint32_t m, uint32_t n)
{
unsigned r, t1, t2, t3;
-
+ unsigned h = 1 << 15;
+ /* notation:
+ m = ab, n = cd
+ final result is (((a *c) << 32) + ((b * c + a * d) << 16) + b * d +
+ (1 << 31)) >> 32
+ */
asm (
- "swap.w %[a], %[t1] \n" /* t1 = ba */
- "mulu %[t1], %[b] \n" /* a * d */
- "swap.w %[b], %[t3] \n" /* t3 = dc */
- "sts macl, %[t2] \n" /* t2 = a * d */
- "mulu %[t1], %[t3] \n" /* a * c */
- "sts macl, %[r] \n" /* hi = a * c */
- "mulu %[a], %[t3] \n" /* b * c */
- "clrt \n"
- "sts macl, %[t3] \n" /* t3 = b * c */
- "addc %[t2], %[t3] \n" /* t3 += t2, carry -> t2 */
- "movt %[t2] \n"
- "mulu %[a], %[b] \n" /* b * d */
- "mov %[t3], %[t1] \n" /* t1t3 = t2t3 << 16 */
- "xtrct %[t2], %[t1] \n"
- "shll16 %[t3] \n"
- "sts macl, %[t2] \n" /* lo = b * d */
- "clrt \n" /* hi.lo += t1t3 */
- "addc %[t3], %[t2] \n"
- "addc %[t1], %[r] \n"
+ "swap.w %[m], %[t1]\n\t" /* t1 = ba */
+ "mulu %[m], %[n]\n\t" /* b * d */
+ "swap.w %[n], %[t3]\n\t" /* t3 = dc */
+ "sts macl, %[r]\n\t" /* r = b * d */
+ "mulu %[m], %[t3]\n\t" /* b * c */
+ "shlr16 %[r]\n\t"
+ "sts macl, %[t2]\n\t" /* t2 = b * c */
+ "mulu %[t1], %[t3]\n\t" /* a * c */
+ "add %[t2], %[r]\n\t"
+ "sts macl, %[t3]\n\t" /* t3 = a * c */
+ "mulu %[t1], %[n]\n\t" /* a * d */
+ "shll16 %[t3]\n\t"
+ "sts macl, %[t2]\n\t" /* t2 = a * d */
+ "add %[t2], %[r]\n\t"
+ "add %[t3], %[r]\n\t" /* r = ((b * d) >> 16) + (b * c + a * d) +
+ ((a * c) << 16) */
+ "add %[h], %[r]\n\t" /* round result */
+ "shlr16 %[r]\n\t" /* truncate result */
: /* outputs */
[r] "=&r"(r),
[t1]"=&r"(t1),
[t2]"=&r"(t2),
[t3]"=&r"(t3)
: /* inputs */
- [a] "r" (a),
- [b] "r" (b)
+ [h] "r" (h),
+ [m] "r" (m),
+ [n] "r" (n)
);
return r;
}
-#define SC_MUL(x, y) sc_mul32(x, y)
-#define SC_MUL_INIT
-#define SC_MUL_END
+#elif defined(TEST_SH_MATH)
+static inline uint32_t sc_mul_u32_rnd(uint32_t op1, uint32_t op2)
+{
+ uint64_t tmp = (uint64_t)op1 * op2;
+ tmp += 1LU << 31;
+ tmp >>= 32;
+ return tmp;
+}
+#else
+#define SC_OUT(n, c) (((n) + (1 << 23)) >> 24)
#endif
-
-#ifndef SC_MUL
-#define SC_MUL(x, y) ((x) * (uint64_t)(y) >> 32)
-#define SC_MUL_INIT
-#define SC_MUL_END
+#ifndef SC_OUT
+#define SC_OUT(n, c) (sc_mul_u32_rnd(n, (c)->recip))
#endif
struct img_part {
@@ -130,8 +124,14 @@
horizontal scaler, and row output
*/
struct scaler_context {
- uint32_t divisor;
- uint32_t round;
+#if defined(CPU_SH) || defined(TEST_SH_MATH)
+ uint32_t recip;
+#else
+ uint32_t h_i_val;
+ uint32_t h_o_val;
+ uint32_t v_i_val;
+ uint32_t v_o_val;
+#endif
struct bitmap *bm;
struct dim *src;
unsigned char *buf;