| /*************************************************************************** |
| * __________ __ ___. |
| * Open \______ \ ____ ____ | | _\_ |__ _______ ___ |
| * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / |
| * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < |
| * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ |
| * \/ \/ \/ \/ \/ |
| * $Id$ |
| * |
| * Copyright (C) 2006 Jens Arnold |
| * |
| * Fixed point library for plugins |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| * KIND, either express or implied. |
| * |
| ****************************************************************************/ |
| #include "fixedpoint.h" |
| #include <stdlib.h> |
| #include <stdbool.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| |
| #define ULONG_BITS (sizeof (unsigned long)*CHAR_BIT) |
| |
| /** TAKEN FROM ORIGINAL fixedpoint.h */ |
| /* Inverse gain of circular cordic rotation in s0.31 format. */ |
| static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */ |
| |
| /* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */ |
| static const unsigned long atan_table[] = { |
| 0x1fffffff, /* +0.785398163 (or pi/4) */ |
| 0x12e4051d, /* +0.463647609 */ |
| 0x09fb385b, /* +0.244978663 */ |
| 0x051111d4, /* +0.124354995 */ |
| 0x028b0d43, /* +0.062418810 */ |
| 0x0145d7e1, /* +0.031239833 */ |
| 0x00a2f61e, /* +0.015623729 */ |
| 0x00517c55, /* +0.007812341 */ |
| 0x0028be53, /* +0.003906230 */ |
| 0x00145f2e, /* +0.001953123 */ |
| 0x000a2f98, /* +0.000976562 */ |
| 0x000517cc, /* +0.000488281 */ |
| 0x00028be6, /* +0.000244141 */ |
| 0x000145f3, /* +0.000122070 */ |
| 0x0000a2f9, /* +0.000061035 */ |
| 0x0000517c, /* +0.000030518 */ |
| 0x000028be, /* +0.000015259 */ |
| 0x0000145f, /* +0.000007629 */ |
| 0x00000a2f, /* +0.000003815 */ |
| 0x00000517, /* +0.000001907 */ |
| 0x0000028b, /* +0.000000954 */ |
| 0x00000145, /* +0.000000477 */ |
| 0x000000a2, /* +0.000000238 */ |
| 0x00000051, /* +0.000000119 */ |
| 0x00000028, /* +0.000000060 */ |
| 0x00000014, /* +0.000000030 */ |
| 0x0000000a, /* +0.000000015 */ |
| 0x00000005, /* +0.000000007 */ |
| 0x00000002, /* +0.000000004 */ |
| 0x00000001, /* +0.000000002 */ |
| 0x00000000, /* +0.000000001 */ |
| 0x00000000, /* +0.000000000 */ |
| }; |
| |
| /* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */ |
| static const short sin_table[91] = |
| { |
| 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, |
| 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, |
| 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, |
| 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, |
| 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, |
| 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, |
| 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, |
| 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, |
| 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, |
| 16384 |
| }; |
| |
| /** |
| * Implements sin and cos using CORDIC rotation. |
| * |
| * @param phase has range from 0 to 0xffffffff, representing 0 and |
| * 2*pi respectively. |
| * @param cos return address for cos |
| * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX, |
| * representing -1 and 1 respectively. |
| */ |
| long fp_sincos(unsigned long phase, long *cos) |
| { |
| int32_t x, x1, y, y1; |
| unsigned long z, z1; |
| int i; |
| |
| /* Setup initial vector */ |
| x = cordic_circular_gain; |
| y = 0; |
| z = phase; |
| |
| /* The phase has to be somewhere between 0..pi for this to work right */ |
| if (z < 0xffffffff / 4) { |
| /* z in first quadrant, z += pi/2 to correct */ |
| x = -x; |
| z += 0xffffffff / 4; |
| } else if (z < 3 * (0xffffffff / 4)) { |
| /* z in third quadrant, z -= pi/2 to correct */ |
| z -= 0xffffffff / 4; |
| } else { |
| /* z in fourth quadrant, z -= 3pi/2 to correct */ |
| x = -x; |
| z -= 3 * (0xffffffff / 4); |
| } |
| |
| /* Each iteration adds roughly 1-bit of extra precision */ |
| for (i = 0; i < 31; i++) { |
| x1 = x >> i; |
| y1 = y >> i; |
| z1 = atan_table[i]; |
| |
| /* Decided which direction to rotate vector. Pivot point is pi/2 */ |
| if (z >= 0xffffffff / 4) { |
| x -= y1; |
| y += x1; |
| z -= z1; |
| } else { |
| x += y1; |
| y -= x1; |
| z += z1; |
| } |
| } |
| |
| if (cos) |
| *cos = x; |
| |
| return y; |
| } |
| |
| /* Accurate sqrt with only elementary operations. |
| * Snagged from: |
| * http://www.devmaster.net/articles/fixed-point-optimizations/ |
| * |
| * Extension to fractions and initial estimate improvement by jethead71 |
| */ |
| long fp_sqrt(long x, unsigned int fracbits) |
| { |
| if (x <= 0) { |
| return 0; /* no sqrt(neg), or just sqrt(0) = 0 */ |
| } |
| |
| unsigned long g = 0; |
| unsigned long e = x; |
| |
| int intwidth = ULONG_BITS - fracbits; |
| int bshift = __builtin_clzl(e); |
| |
| if (bshift >= intwidth) { |
| bshift = -1; |
| } |
| else { |
| bshift = (intwidth - bshift - 1) >> 1; |
| } |
| |
| unsigned long b = 1ul << (bshift + fracbits); |
| |
| /* integer part */ |
| while (e && bshift >= 0) { |
| unsigned long t = ((g << 1) | b) << bshift--; |
| |
| if (e >= t) { |
| g |= b; |
| e -= t; |
| } |
| |
| b >>= 1; |
| } |
| |
| /* fractional part */ |
| while (e && b) { |
| unsigned long t = (g << 1) | b; |
| unsigned long c = e; /* detect carry */ |
| |
| e <<= 1; |
| |
| if (e < c || e >= t) { |
| g |= b; |
| e -= t; |
| } |
| |
| b >>= 1; |
| } |
| |
| #if 0 |
| /* round up if the next bit would be a '1' */ |
| if (e) { |
| unsigned long c = e; /* detect carry */ |
| |
| e <<= 1; |
| |
| if (e < c || e >= ((g << 1) | 1)) { |
| g++; |
| } |
| } |
| #endif |
| |
| return g; |
| } |
| |
| /* raise an integer to an integer power */ |
| long ipow(long x, long y) |
| { |
| /* y[k] = bit k of y, 0 or 1; k=0...n; n=|_ lg(y) _| |
| * |
| * x^y = x^(y[0]*2^0 + y[1]*2^1 + ... + y[n]*2^n) |
| * = x^(y[0]*2^0) * x^(y[1]*2^1) * ... * x^(y[n]*2^n) |
| */ |
| long a = 1; |
| |
| if (y < 0 && x != -1) |
| { |
| a = 0; /* would be < 1 or +inf if x == 0 */ |
| } |
| else |
| { |
| while (y) |
| { |
| if (y & 1) |
| a *= x; |
| |
| y /= 2; |
| x *= x; |
| } |
| } |
| |
| return a; |
| } |
| |
| /** |
| * Fixed point sinus using a lookup table |
| * don't forget to divide the result by 16384 to get the actual sinus value |
| * @param val sinus argument in degree |
| * @return sin(val)*16384 |
| */ |
| long fp14_sin(int val) |
| { |
| val = (val+360)%360; |
| if (val < 181) |
| { |
| if (val < 91)/* phase 0-90 degree */ |
| return (long)sin_table[val]; |
| else/* phase 91-180 degree */ |
| return (long)sin_table[180-val]; |
| } |
| else |
| { |
| if (val < 271)/* phase 181-270 degree */ |
| return -(long)sin_table[val-180]; |
| else/* phase 270-359 degree */ |
| return -(long)sin_table[360-val]; |
| } |
| return 0; |
| } |
| |
| /** |
| * Fixed point cosinus using a lookup table |
| * don't forget to divide the result by 16384 to get the actual cosinus value |
| * @param val sinus argument in degree |
| * @return cos(val)*16384 |
| */ |
| long fp14_cos(int val) |
| { |
| val = (val+360)%360; |
| if (val < 181) |
| { |
| if (val < 91)/* phase 0-90 degree */ |
| return (long)sin_table[90-val]; |
| else/* phase 91-180 degree */ |
| return -(long)sin_table[val-90]; |
| } |
| else |
| { |
| if (val < 271)/* phase 181-270 degree */ |
| return -(long)sin_table[270-val]; |
| else/* phase 270-359 degree */ |
| return (long)sin_table[val-270]; |
| } |
| return 0; |
| } |
| |
| /** |
| * Fixed-point natural log |
| * taken from http://www.quinapalus.com/efunc.html |
| * "The code assumes integers are at least 32 bits long. The (positive) |
| * argument and the result of the function are both expressed as fixed-point |
| * values with 16 fractional bits, although intermediates are kept with 28 |
| * bits of precision to avoid loss of accuracy during shifts." |
| */ |
| long fp16_log(int x) |
| { |
| int t; |
| int y = 0xa65af; |
| |
| if (x < 0x00008000) x <<=16, y -= 0xb1721; |
| if (x < 0x00800000) x <<= 8, y -= 0x58b91; |
| if (x < 0x08000000) x <<= 4, y -= 0x2c5c8; |
| if (x < 0x20000000) x <<= 2, y -= 0x162e4; |
| if (x < 0x40000000) x <<= 1, y -= 0x0b172; |
| t = x + (x >> 1); if ((t & 0x80000000) == 0) x = t, y -= 0x067cd; |
| t = x + (x >> 2); if ((t & 0x80000000) == 0) x = t, y -= 0x03920; |
| t = x + (x >> 3); if ((t & 0x80000000) == 0) x = t, y -= 0x01e27; |
| t = x + (x >> 4); if ((t & 0x80000000) == 0) x = t, y -= 0x00f85; |
| t = x + (x >> 5); if ((t & 0x80000000) == 0) x = t, y -= 0x007e1; |
| t = x + (x >> 6); if ((t & 0x80000000) == 0) x = t, y -= 0x003f8; |
| t = x + (x >> 7); if ((t & 0x80000000) == 0) x = t, y -= 0x001fe; |
| x = 0x80000000 - x; |
| y -= x >> 15; |
| |
| return y; |
| } |
| |
| /** |
| * Fixed-point exponential |
| * taken from http://www.quinapalus.com/efunc.html |
| * "The code assumes integers are at least 32 bits long. The (non-negative) |
| * argument and the result of the function are both expressed as fixed-point |
| * values with 16 fractional bits. Notice that after 11 steps of the |
| * algorithm the constants involved become such that the code is simply |
| * doing a multiplication: this is explained in the note below. |
| * The extension to negative arguments is left as an exercise." |
| */ |
| long fp16_exp(int x) |
| { |
| int t; |
| int y = 0x00010000; |
| |
| if (x < 0) x += 0xb1721, y >>= 16; |
| t = x - 0x58b91; if (t >= 0) x = t, y <<= 8; |
| t = x - 0x2c5c8; if (t >= 0) x = t, y <<= 4; |
| t = x - 0x162e4; if (t >= 0) x = t, y <<= 2; |
| t = x - 0x0b172; if (t >= 0) x = t, y <<= 1; |
| t = x - 0x067cd; if (t >= 0) x = t, y += y >> 1; |
| t = x - 0x03920; if (t >= 0) x = t, y += y >> 2; |
| t = x - 0x01e27; if (t >= 0) x = t, y += y >> 3; |
| t = x - 0x00f85; if (t >= 0) x = t, y += y >> 4; |
| t = x - 0x007e1; if (t >= 0) x = t, y += y >> 5; |
| t = x - 0x003f8; if (t >= 0) x = t, y += y >> 6; |
| t = x - 0x001fe; if (t >= 0) x = t, y += y >> 7; |
| y += ((y >> 8) * x) >> 8; |
| |
| return y; |
| } |
| |
| /** MODIFIED FROM replaygain.c */ |
| |
| #define FP_MUL_FRAC(x, y) fp_mul(x, y, fracbits) |
| #define FP_DIV_FRAC(x, y) fp_div(x, y, fracbits) |
| |
| /* constants in fixed point format, 28 fractional bits */ |
| #define FP28_LN2 (186065279L) /* ln(2) */ |
| #define FP28_LN2_INV (387270501L) /* 1/ln(2) */ |
| #define FP28_EXP_ZERO (44739243L) /* 1/6 */ |
| #define FP28_EXP_ONE (-745654L) /* -1/360 */ |
| #define FP28_EXP_TWO (12428L) /* 1/21600 */ |
| #define FP28_LN10 (618095479L) /* ln(10) */ |
| #define FP28_LOG10OF2 (80807124L) /* log10(2) */ |
| |
| #define TOL_BITS 2 /* log calculation tolerance */ |
| |
| |
| /* The fpexp10 fixed point math routine is based |
| * on oMathFP by Dan Carter (http://orbisstudios.com). |
| */ |
| |
| /** FIXED POINT EXP10 |
| * Return 10^x as FP integer. Argument is FP integer. |
| */ |
| long fp_exp10(long x, unsigned int fracbits) |
| { |
| long k; |
| long z; |
| long R; |
| long xp; |
| |
| /* scale constants */ |
| const long fp_one = (1 << fracbits); |
| const long fp_half = (1 << (fracbits - 1)); |
| const long fp_two = (2 << fracbits); |
| const long fp_mask = (fp_one - 1); |
| const long fp_ln2_inv = (FP28_LN2_INV >> (28 - fracbits)); |
| const long fp_ln2 = (FP28_LN2 >> (28 - fracbits)); |
| const long fp_ln10 = (FP28_LN10 >> (28 - fracbits)); |
| const long fp_exp_zero = (FP28_EXP_ZERO >> (28 - fracbits)); |
| const long fp_exp_one = (FP28_EXP_ONE >> (28 - fracbits)); |
| const long fp_exp_two = (FP28_EXP_TWO >> (28 - fracbits)); |
| |
| /* exp(0) = 1 */ |
| if (x == 0) |
| { |
| return fp_one; |
| } |
| |
| /* convert from base 10 to base e */ |
| x = FP_MUL_FRAC(x, fp_ln10); |
| |
| /* calculate exp(x) */ |
| k = (FP_MUL_FRAC(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask; |
| |
| if (x < 0) |
| { |
| k = -k; |
| } |
| |
| x -= FP_MUL_FRAC(k, fp_ln2); |
| z = FP_MUL_FRAC(x, x); |
| R = fp_two + FP_MUL_FRAC(z, fp_exp_zero + FP_MUL_FRAC(z, fp_exp_one |
| + FP_MUL_FRAC(z, fp_exp_two))); |
| xp = fp_one + FP_DIV_FRAC(FP_MUL_FRAC(fp_two, x), R - x); |
| |
| if (k < 0) |
| { |
| k = fp_one >> (-k >> fracbits); |
| } |
| else |
| { |
| k = fp_one << (k >> fracbits); |
| } |
| |
| return FP_MUL_FRAC(k, xp); |
| } |
| |
| /** FIXED POINT LOG10 |
| * Return log10(x) as FP integer. Argument is FP integer. |
| */ |
| long fp_log10(long n, unsigned int fracbits) |
| { |
| /* Calculate log2 of argument */ |
| |
| long log2, frac; |
| const long fp_one = (1 << fracbits); |
| const long fp_two = (2 << fracbits); |
| const long tolerance = (1 << ((fracbits / 2) + 2)); |
| |
| if (n <=0) return FP_NEGINF; |
| log2 = 0; |
| |
| /* integer part */ |
| while (n < fp_one) |
| { |
| log2 -= fp_one; |
| n <<= 1; |
| } |
| while (n >= fp_two) |
| { |
| log2 += fp_one; |
| n >>= 1; |
| } |
| |
| /* fractional part */ |
| frac = fp_one; |
| while (frac > tolerance) |
| { |
| frac >>= 1; |
| n = FP_MUL_FRAC(n, n); |
| if (n >= fp_two) |
| { |
| n >>= 1; |
| log2 += frac; |
| } |
| } |
| |
| /* convert log2 to log10 */ |
| return FP_MUL_FRAC(log2, (FP28_LOG10OF2 >> (28 - fracbits))); |
| } |
| |
| /** CONVERT FACTOR TO DECIBELS */ |
| long fp_decibels(unsigned long factor, unsigned int fracbits) |
| { |
| /* decibels = 20 * log10(factor) */ |
| return FP_MUL_FRAC((20L << fracbits), fp_log10(factor, fracbits)); |
| } |
| |
| /** CONVERT DECIBELS TO FACTOR */ |
| long fp_factor(long decibels, unsigned int fracbits) |
| { |
| /* factor = 10 ^ (decibels / 20) */ |
| return fp_exp10(FP_DIV_FRAC(decibels, (20L << fracbits)), fracbits); |
| } |