blob: 16394b86909571aec590eb54002b753f52647a40 [file] [log] [blame]
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006-2007 Thom Johansen
* Copyright (C) 2010 Bertrik Sikken
* Copyright (C) 2012 Michael Sevakis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "rbcodecconfig.h"
/****************************************************************************
* void channel_mode_proc_mono(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text, "ax",%progbits
.global channel_mode_proc_mono
.type channel_mode_proc_mono, %function
channel_mode_proc_mono:
@ input: r0 = this, r1 = buf_p
ldr r1, [r1] @ r1 = buf = *buf_p;
stmfd sp!, { r4, lr } @
@
ldmia r1, { r0-r2 } @ r0 = buf->remcount, r1 = buf->p32[0],
@ r2 = buf->p32[1]
subs r0, r0, #1 @ odd: end at 0; even: end at -1
beq .mono_singlesample @ Zero? Only one sample!
@
.monoloop: @
ldmia r1, { r3, r4 } @ r3, r4 = Li0, Li1
ldmia r2, { r12, r14 } @ r12, r14 = Ri0, Ri1
mov r3, r3, asr #1 @ Mo0 = Li0 / 2 + Ri0 / 2
mov r4, r4, asr #1 @ Mo1 = Li1 / 2 + Ri1 / 2
add r12, r3, r12, asr #1 @
add r14, r4, r14, asr #1 @
subs r0, r0, #2 @
stmia r1!, { r12, r14 } @ store Mo0, Mo1
stmia r2!, { r12, r14 } @ store Mo0, Mo1
bgt .monoloop @
@
ldmpc cond=lt, regs=r4 @ if count was even, we're done
@
.mono_singlesample: @
ldr r3, [r1] @ r3 = Ls
ldr r12, [r2] @ r12 = Rs
mov r3, r3, asr #1 @ Mo = Ls / 2 + Rs / 2
add r12, r3, r12, asr #1 @
str r12, [r1] @ store Mo
str r12, [r2] @ store Mo
@
ldmpc regs=r4 @
.size channel_mode_proc_mono, .-channel_mode_proc_mono
/****************************************************************************
* void channel_mode_proc_custom(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text, "ax",%progbits
.global channel_mode_proc_custom
.type channel_mode_proc_custom, %function
channel_mode_proc_custom:
@ input: r0 = this, r1 = buf_p
ldr r2, [r0] @ r2 = &channel_mode_data = this->data
ldr r1, [r1] @ r1 = buf = *buf_p;
stmfd sp!, { r4-r10, lr }
ldmia r2, { r3, r4 } @ r3 = sw_gain, r4 = sw_cross
ldmia r1, { r0-r2 } @ r0 = buf->remcount, r1 = buf->p32[0],
@ r2 = buf->p32[1]
subs r0, r0, #1
beq .custom_single_sample @ Zero? Only one sample!
.custom_loop:
ldmia r1, { r5, r6 } @ r5 = Li0, r6 = Li1
ldmia r2, { r7, r8 } @ r7 = Ri0, r8 = Ri1
subs r0, r0, #2
smull r9, r10, r5, r3 @ Lc0 = Li0*gain
smull r12, r14, r7, r3 @ Rc0 = Ri0*gain
smlal r9, r10, r7, r4 @ Lc0 += Ri0*cross
smlal r12, r14, r5, r4 @ Rc0 += Li0*cross
mov r9, r9, lsr #31 @ Convert to s0.31
mov r12, r12, lsr #31
orr r5, r9, r10, asl #1
orr r7, r12, r14, asl #1
smull r9, r10, r6, r3 @ Lc1 = Li1*gain
smull r12, r14, r8, r3 @ Rc1 = Ri1*gain
smlal r9, r10, r8, r4 @ Lc1 += Ri1*cross
smlal r12, r14, r6, r4 @ Rc1 += Li1*cross
mov r9, r9, lsr #31 @ Convert to s0.31
mov r12, r12, lsr #31
orr r6, r9, r10, asl #1
orr r8, r12, r14, asl #1
stmia r1!, { r5, r6 } @ Store Lc0, Lc1
stmia r2!, { r7, r8 } @ Store Rc0, Rc1
bgt .custom_loop
ldmpc cond=lt, regs=r4-r10 @ < 0? even count
.custom_single_sample:
ldr r5, [r1] @ handle odd sample
ldr r7, [r2]
smull r9, r10, r5, r3 @ Lc0 = Li0*gain
smull r12, r14, r7, r3 @ Rc0 = Ri0*gain
smlal r9, r10, r7, r4 @ Lc0 += Ri0*cross
smlal r12, r14, r5, r4 @ Rc0 += Li0*cross
mov r9, r9, lsr #31 @ Convert to s0.31
mov r12, r12, lsr #31
orr r5, r9, r10, asl #1
orr r7, r12, r14, asl #1
str r5, [r1] @ Store Lc0
str r7, [r2] @ Store Rc0
ldmpc regs=r4-r10
.size channel_mode_proc_custom, .-channel_mode_proc_custom
/****************************************************************************
* void channel_mode_proc_karaoke(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text, "ax",%progbits
.global channel_mode_proc_karaoke
.type channel_mode_proc_karaoke, %function
channel_mode_proc_karaoke:
@ input: r0 = this, r1 = buf_p
ldr r1, [r1] @ r1 = buf = *buf_p;
stmfd sp!, { r4, lr } @
@
ldmia r1, { r0-r2 } @ r0 = buf->remcount, r1 = buf->p32[0],
@ r2 = buf->p32[1]
subs r0, r0, #1 @ odd: end at 0; even: end at -1
beq .karaoke_singlesample @ Zero? Only one sample!
@
.karaokeloop: @
ldmia r1, { r3, r4 } @ r3, r4 = Li0, Li1
ldmia r2, { r12, r14 } @ r12, r14 = Ri0, Ri1
mov r3, r3, asr #1 @ Lo0 = Li0 / 2 - Ri0 / 2
mov r4, r4, asr #1 @ Lo1 = Li1 / 2 - Ri1 / 2
sub r3, r3, r12, asr #1 @
sub r4, r4, r14, asr #1 @
rsb r12, r3, #0 @ Ro0 = -Lk0 = Rs0 / 2 - Ls0 / 2
rsb r14, r4, #0 @ Ro1 = -Lk1 = Ri1 / 2 - Li1 / 2
subs r0, r0, #2 @
stmia r1!, { r3, r4 } @ store Lo0, Lo1
stmia r2!, { r12, r14 } @ store Ro0, Ro1
bgt .karaokeloop @
@
ldmpc cond=lt, regs=r4 @ if count was even, we're done
@
.karaoke_singlesample: @
ldr r3, [r1] @ r3 = Li
ldr r12, [r2] @ r12 = Ri
mov r3, r3, asr #1 @ Lk = Li / 2 - Ri /2
sub r3, r3, r12, asr #1 @
rsb r12, r3, #0 @ Rk = -Lo = Ri / 2 - Li / 2
str r3, [r1] @ store Lo
str r12, [r2] @ store Ro
@
ldmpc regs=r4 @
.size channel_mode_proc_karaoke, .-channel_mode_proc_karaoke
/****************************************************************************
* void crossfeed_process(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text, "ax",%progbits
.global crossfeed_process
crossfeed_process:
@ input: r0 = this, r1 = buf_p
@ unfortunately, we ended up in a bit of a register squeeze here, and need
@ to keep the count on the stack :/
ldr r1, [r1] @ r1 = buf = *buf_p;
stmfd sp!, { r4-r11, lr } @ stack modified regs
ldr r0, [r0] @ r0 = this->data = &crossfeed_state
ldmia r1, { r1-r3 } @ r1 = buf->remcount, r2 = buf->p32[0],
@ r3 = buf->p32[1]
ldmia r0, { r4-r12, r14 } @ r4 = gain, r5-r7 = coeffs,
@ r8-r11 = history, r12 = index,
@ r14 = index_max
add r0, r0, #0x28 @ r0 = state->delay
stmfd sp!, { r0-r1, r14 } @ stack state->delay, count, index_max
/* Register usage in loop:
* r0 = acc low/count, r1 = acc high, r2 = buf->p32[0],
* r3 = buf->p32[1], r4 = direct gain, r5-r7 = b0, b1, a1 (filter coefs),
* r8 = dr[n-1], r9 = y_r[n-1], r10 = dl[n-1], r11 = y_l[n-1],
* r12 = index, r14 = scratch/index_max
*/
.cfloop:
smull r0, r1, r6, r8 @ acc = b1*dr[n - 1]
ldr r8, [r12, #4] @ r8 = dr[n]
smlal r0, r1, r7, r9 @ acc += a1*y_r[n - 1]
smlal r0, r1, r5, r8 @ acc += b0*dr[n]
ldr r14, [r2] @ load left input: x_l[n]
mov r9, r1, asl #1 @ fix format for filter history
smlal r0, r1, r4, r14 @ acc += gain*x_l[n]
mov r1, r1, asl #1 @ fix format
str r1, [r2], #4 @ save result
smull r0, r1, r6, r10 @ acc = b1*dl[n - 1]
ldr r10, [r12] @ r10 = dl[n]
smlal r0, r1, r7, r11 @ acc += a1*y_l[n - 1]
smlal r0, r1, r5, r10 @ acc += b0*dl[n]
str r14, [r12], #4 @ save left input to delay line
ldr r14, [r3] @ load right input: x_r[n]
mov r11, r1, asl #1 @ fix format for filter history
smlal r0, r1, r4, r14 @ acc += gain*x_r[n]
str r14, [r12], #4 @ save right input to delay line
ldmib sp, { r0, r14 } @ fetch count and delay end
mov r1, r1, asl #1 @ fix format
str r1, [r3], #4 @ save result
cmp r12, r14 @ need to wrap to start of delay?
ldrhs r12, [sp] @ wrap delay index
subs r0, r0, #1 @ are we finished?
strgt r0, [sp, #4] @ save count to stack
bgt .cfloop
@ save data back to struct
ldr r0, [sp] @ fetch state->delay
sub r0, r0, #0x18 @ save filter history and delay index
stmia r0, { r8-r12 } @
add sp, sp, #12 @ remove temp variables from stack
ldmpc regs=r4-r11
.size crossfeed_process, .-crossfeed_process
/****************************************************************************
* void crossfeed_meier_process(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text
.global crossfeed_meier_process
crossfeed_meier_process:
@ input: r0 = this, r1 = buf_p
ldr r1, [r1] @ r1 = buf = *buf_p;
ldr r0, [r0] @ r0 = this->data = &crossfeed_state
stmfd sp!, { r4-r10, lr } @ stack non-volatile context
ldmia r1, { r1-r3 } @ r1 = buf->remcout, r2=p32[0], r3=p32[1]
ldmib r0, { r4-r8 } @ r4 = vcl, r5 = vcr, r6 = vdiff
@ r7 = coef1, r8 = coef2
.cfm_loop:
ldr r12, [r2] @ r12 = lout
ldr r14, [r3] @ r14 = rout
smull r9, r10, r8, r6 @ r9, r10 = common = coef2*vdiff
add r12, r12, r4 @ lout += vcl
add r14, r14, r5 @ rout += vcr
sub r6, r12, r14 @ r6 = vdiff = lout - rout
str r12, [r2], #4 @ store left channel
str r14, [r3], #4 @ store right channel
rsbs r12, r9, #0 @ r12 = -common (lo)
rsc r14, r10, #0 @ r14 = -common (hi)
smlal r9, r10, r7, r4 @ r9, r10 = res1 = coef1*vcl + common
smlal r12, r14, r7, r5 @ r12, r14 = res2 = coef1*vcr - common
subs r1, r1, #1 @ count--
mov r9, r9, lsr #31 @ r9 = convert res1 to s0.31
orr r9, r9, r10, asl #1 @ .
mov r12, r12, lsr #31 @ r12 = convert res2 to s0.31
orr r12, r12, r14, asl #1 @ .
sub r4, r4, r9 @ r4 = vcl -= res1
sub r5, r5, r12 @ r5 = vcr -= res2
bgt .cfm_loop @ more samples?
stmib r0, { r4-r6 } @ save vcl, vcr, vdiff
ldmpc regs=r4-r10 @ restore non-volatile context, return
.size crossfeed_meier_process, .-crossfeed_meier_process
/****************************************************************************
* int resample_hermite(struct resample_data *data, struct dsp_buffer *src,
* struct dsp_buffer *dst)
*/
.section .text, "ax",%progbits
.global resample_hermite
resample_hermite:
@input: r0 = data, r1 = src, r2 = dst
stmfd sp!, { r0-r2, r4-r11, lr } @ stack parms, modified regs
ldr r9, [r1] @ r9 = srcrem = src->remcount
ldrb r10, [r1, #17] @ r10 = ch = num_channels
ldr r14, [r0] @ r14 = data->delta, r0 = data
cmp r9, #0x8000 @ srcrem = MIN(srcrem, 0x8000)
movgt r9, #0x8000 @
@ Channels are processed high to low while history is saved low to high
@ It's really noone's business how we do this
add r12, r0, #8 @ r12 = h = data->history
.hrs_channel_loop:
stmfd sp!, { r10, r12 } @ push ch, h
ldr r5, [r0, #4] @ r5 = data->phase
ldr r6, [r1, r10, lsl #2] @ r6 = src->p32[ch]
ldr r7, [r2, r10, lsl #2] @ r7 = dst->p32[ch]
ldr r8, [r2, #12] @ r8 = dstrem = dst->bufcount
mov r0, r5, lsr #16 @ r0 = pos = phase >> 16
cmp r0, r9 @ r0 = pos = MIN(pos, srcrem)
movgt r0, r9 @
add r6, r6, r0, lsl #2 @ r6 = &s[pos]
cmp r0, #3 @ pos >= 3? history not needed
ldmgedb r6, { r1-r3 } @ x3..x1 = s[pos-3]..s[pos-1]
bge .hrs_loadhist_done @
add r10, r0, r0, lsl #1 @ branch pc + pos*12
add pc, pc, r10, lsl #2 @
nop @
ldmia r12, { r1-r3 } @ x3..x1 = h[0]..h[2]
b .hrs_loadhist_done @
nop @
ldmib r12, { r1-r2 } @ x3..x2 = h[1]..h[2]
ldr r3, [r6, #-4] @ x1 = s[0]
b .hrs_loadhist_done @
ldr r1, [r12, #8] @ x3 = h[2]
ldmdb r6, { r2-r3 } @ x2..x1 = s[0]..s[1]
.hrs_loadhist_done:
cmp r0, r9 @ pos past end?
bge .hrs_channel_done
cmp r14, #0x10000 @ delta >= 1.0?
bhs .hrs_dsstart @ yes? is downsampling
/** Upsampling **/
str r9, [sp, #-4]! @ push srcrem
mov r5, r5, lsl #16 @ r5 = phase << 16
sub r0, r9, r0 @ r0 = dte = srcrem - pos
mov r14, r14, lsl #16 @ r14 = delta << 16
@ Register usage in loop:
@ r0 = dte
@ r1 = x3, r2 = x2, r3 = x1, r4 = x0
@ r5 = phase << 16/frac, r6 = &s[pos], r7 = d, r8 = dstrem
@ r9 = scratch/acclo, r10 = scratch/acchi
@ r11 = c2, r12 = c3, c1 calculated in frac loop
@ r14 = delta << 16
@
@ Try to avoid overflow as much as possible and at the same time preserve
@ accuracy. Same formulas apply to downsampling but registers and
@ instruction order differ due to specific constraints.
@ c1 = -0.5*x3 + 0.5*x1
@ = 0.5*(x1 - x3) <--
@
@ v = x1 - x2, -v = x2 - x1
@ c2 = x3 - 2.5*x2 + 2*x1 - 0.5*x0
@ = x3 + 2*(x1 - x2) - 0.5*(x0 + x2)
@ = x3 + 2*v - 0.5*(x0 + x2) <--
@
@ c3 = -0.5*x3 + 1.5*x2 - 1.5*x1 + 0.5*x0
@ = 0.5*(x0 - x3 + (x2 - x1)) + (x2 - x1)
@ = 0.5*(x0 - x3 - v) - v <--
.hrs_usloop_carry:
ldr r4, [r6], #4 @ x0 = s[pos]
sub r9, r3, r2 @ r9 = v, r11 = c2, r12 = c3
add r11, r1, r9, asl #1 @
add r10, r4, r2 @
sub r12, r4, r1 @
sub r12, r12, r9 @
sub r11, r11, r10, asr #1 @
rsb r12, r9, r12, asr #1 @
.hrs_usloop_frac:
mov r5, r5, lsr #16 @ r5 = phase -> frac
smull r9, r10, r12, r5 @ acc = frac * c3 + c2
add r9, r11, r9, lsr #16 @
add r9, r9, r10, asl #16 @
smull r9, r10, r5, r9 @ acc = frac * acc + c1
mov r9, r9, lsr #16 @
orr r9, r9, r10, asl #16 @
sub r10, r3, r1 @
add r9, r9, r10, asr #1 @
smull r9, r10, r5, r9 @ acc = frac * acc + x2
subs r8, r8, #1 @ destination full?
add r9, r2, r9, lsr #16 @
add r9, r9, r10, asl #16 @
str r9, [r7], #4 @ *d++ = acc
bls .hrs_usfull @ yes? channel is done
adds r5, r14, r5, lsl #16 @ frac += delta
bcc .hrs_usloop_frac @ if carry is set, pos is incremented
subs r0, r0, #1 @ if dte > 0, do another sample
mov r1, r2 @ x3 = x2
mov r2, r3 @ x2 = x1
mov r3, r4 @ x1 = x0
bgt .hrs_usloop_carry
b .hrs_usdone
.hrs_usfull:
adds r5, r14, r5, lsl #16 @ do missed phase increment
bcc .hrs_usdone @
sub r0, r0, #1 @ do missed dte decrement
mov r1, r2 @ do missed history update
mov r2, r3 @
mov r3, r4 @
.hrs_usdone:
ldr r9, [sp], #4 @ r9 = pop srcrem
mov r14, r14, lsr #16 @ restore delta for next round
sub r0, r9, r0 @ r0 = pos = srcrem - dte
orr r5, r5, r0 @ reconstruct swapped phase
mov r5, r5, ror #16 @ swap pos and frac for phase
b .hrs_channel_done
/** Downsampling **/
@ Register usage in loop:
@ r0 = pos/frac
@ r1 = x3, r2 = x2, r3 = x1, r4 = x0
@ r5 = phase, r6 = &s[pos], r7 = d, r8 = dstrem
@ r9 = srcrem, r10 = scratch/acclo
@ r11 = c2/scratch, r12 = c3/acchi
@ r14 = delta
.hrs_dsloop_4:
ldmdb r6, { r1-r3 } @ x3..x0 = s[pos-3]..s[pos-1]
b .hrs_dsloop
.hrs_dsloop_3:
ldmdb r6, { r2-r3 } @ x2..x0 = s[pos-2]..s[pos-1]
mov r1, r4 @ x3 = x0
b .hrs_dsloop
.hrs_dsloop_2:
mov r1, r3 @ x3 = x1
ldr r3, [r6, #-4] @ x1 = s[pos-1]
mov r2, r4 @ x2 = x0
b .hrs_dsloop
.hrs_dsloop_1: @ expected loop destination
mov r1, r2 @ x3 = x2
mov r2, r3 @ x2 = x1
mov r3, r4 @ x1 = x0
.hrs_dsloop:
subs r8, r8, #1 @ destination full?
cmpgt r9, r0 @ ... || pos >= srcrem?
ble .hrs_channel_done
.hrs_dsstart:
ldr r4, [r6] @ x0 = s[pos]
sub r10, r3, r2 @ r10 = v, r11 = c2, r12 = c3
add r11, r4, r2 @
bic r0, r5, r0, lsl #16 @ r0 = frac = phase & 0xffff
sub r11, r1, r11, asr #1 @
add r11, r11, r10, asl #1 @
sub r12, r4, r1 @
sub r12, r12, r10 @
rsb r12, r10, r12, asr #1 @
smull r10, r12, r0, r12 @ acc = frac * c3 + c2
add r10, r11, r10, lsr #16 @
add r10, r10, r12, asl #16 @
sub r11, r3, r1 @
smull r10, r12, r0, r10 @ acc = frac * acc + c1
mov r11, r11, asr #1 @
add r10, r11, r10, lsr #16 @
add r10, r10, r12, asl #16 @
smull r10, r12, r0, r10 @ acc = frac * acc + x2
mov r11, r5, lsr #16 @ r11 = last_pos
add r5, r5, r14 @ phase += delta
mov r0, r5, lsr #16 @ r0 = pos = phase >> 16
add r10, r2, r10, lsr #16 @
add r10, r10, r12, asl #16 @
str r10, [r7], #4 @ *d++ = acc
cmp r0, r9 @ r0 = pos = MIN(pos, srcrem)
movgt r0, r9 @
sub r11, r0, r11 @ shift = pos - last_pos
cmp r11, #4 @
add r6, r6, r11, lsl #2 @ r6 += shift * 4
bge .hrs_dsloop_4 @
ldr pc, [pc, r11, lsl #2] @ branch to corresponding loop address
.word 0, 0
.word .hrs_dsloop_1
.word .hrs_dsloop_2
.word .hrs_dsloop_3
.hrs_channel_done:
ldmfd sp!, { r10, r12 } @ recover ch, h
subs r10, r10, #1 @ --ch
stmia r12!, { r1-r3 } @ h[0..2] = x3..x1
ldmgtia sp, { r0-r2 } @ load data, src, dst
bgt .hrs_channel_loop
ldmfd sp!, { r1-r3 } @ pop data, src, dst
sub r5, r5, r0, lsl #16 @ r5 = phase - (pos << 16)
ldr r2, [r3, #12] @ r2 = dst->bufcount
str r5, [r1, #4] @ data->phase = r5
sub r2, r2, r8 @ r2 = dst->bufcount - dstrem
str r2, [r3] @ dst->remcount = r2
ldmpc regs=r4-r11 @ ... and we're out
.size resample_hermite, .-resample_hermite
/****************************************************************************
* void pga_process(struct dsp_proc_entry *this, struct dsp_buffer **buf_p)
*/
.section .text, "ax",%progbits
.global pga_process
.type pga_process, %function
pga_process:
@ input: r0 = this, r1 = buf_p
ldr r0, [r0] @ r0 = data = this->data (&pga_data)
ldr r1, [r1] @ r1 = buf = *buf_p;
stmfd sp!, { r4-r8, lr }
ldr r4, [r0] @ r4 = data->gain
ldr r0, [r1], #4 @ r0 = buf->remcount, r1 = buf->p32
ldrb r3, [r1, #13] @ r3 = buf->format.num_channels
.pga_channelloop:
ldr r2, [r1], #4 @ r2 = buf->p32[ch] and inc index of p32
subs r12, r0, #1 @ r12 = count - 1
beq .pga_singlesample @ Zero? Only one sample!
.pga_loop:
ldmia r2, { r5, r6 } @ load r5, r6 from r2 (*p32[ch])
smull r7, r8, r5, r4 @ r7 = FRACMUL_SHL(r5, r4, 8)
smull r14, r5, r6, r4 @ r14 = FRACMUL_SHL(r6, r4, 8)
subs r12, r12, #2
mov r7, r7, lsr #23
mov r14, r14, lsr #23
orr r7, r7, r8, asl #9
orr r14, r14, r5, asl #9
stmia r2!, { r7, r14 } @ save r7, r14 to *p32[ch] and increment
bgt .pga_loop @ end of pga loop
blt .pga_evencount @ < 0? even count
.pga_singlesample:
ldr r5, [r2] @ handle odd sample
smull r7, r8, r5, r4 @ r7 = FRACMUL_SHL(r5, r4, 8)
mov r7, r7, lsr #23
orr r7, r7, r8, asl #9
str r7, [r2]
.pga_evencount:
subs r3, r3, #1
bgt .pga_channelloop @ end of channel loop
ldmpc regs=r4-r8
.size pga_process, .-pga_process
/****************************************************************************
* void filter_process(struct dsp_filter *f, int32_t *buf[], int count,
* unsigned int channels)
*
* define HIGH_PRECISION as '1' to make filtering calculate lower bits after
* shifting. without this, "shift" - 1 of the lower bits will be lost here.
*/
#define HIGH_PRECISION 0
#if CONFIG_CPU == PP5002
.section .icode,"ax",%progbits
#else
.section .text, "ax",%progbits
#endif
.global filter_process
filter_process:
@input: r0 = f, r1 = buf, r2 = count, r3 = channels
stmfd sp!, { r4-r11, lr } @ save all clobbered regs
ldmia r0!, { r4-r8 } @ load coefs, r0 = f->history
sub r3, r3, #1 @ r3 = ch = channels - 1
stmfd sp!, { r0-r3 } @ save adjusted params
ldrb r14, [r0, #32] @ r14 = shift
@ Channels are processed high to low while history is saved low to high
@ It's really noone's business how we do this
.fp_channelloop:
ldmia r0, { r9-r12 } @ load history, r0 = history[channels-ch-1]
ldr r3, [r1, r3, lsl #2] @ r3 = buf[ch]
@ r9-r12 = history, r4-r8 = coefs, r0..r1 = accumulator,
@ r2 = number of samples, r3 = buf[ch], r14 = shift amount
.fp_loop:
@ Direct form 1 filtering code.
@ y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2],
@ where y[] is output and x[] is input. This is performed out of order to
@ reuse registers, we're pretty short on regs.
smull r0, r1, r5, r9 @ acc = b1*x[i - 1]
smlal r0, r1, r6, r10 @ acc += b2*x[i - 2]
mov r10, r9 @ fix input history
ldr r9, [r3] @ load input and fix history
smlal r0, r1, r7, r11 @ acc += a1*y[i - 1]
smlal r0, r1, r8, r12 @ acc += a2*y[i - 2]
smlal r0, r1, r4, r9 @ acc += b0*x[i] /* avoid stall on arm9 */
mov r12, r11 @ fix output history
mov r11, r1, asl r14 @ get upper part of result and shift left
#if HIGH_PRECISION
rsb r1, r14, #32 @ get shift amount for lower part
orr r11, r11, r0, lsr r1 @ then mix in correctly shifted lower part
#endif
str r11, [r3], #4 @ save result
subs r2, r2, #1 @ are we done with this channel?
bgt .fp_loop @
ldr r3, [sp, #12] @ r3 = ch
ldr r0, [sp] @ r0 = history[channels-ch-1]
subs r3, r3, #1 @ all channels processed?
stmia r0!, { r9-r12 } @ save back history, history++
ldmhsib sp, { r1-r2 } @ r1 = buf, r2 = count
strhs r3, [sp, #12] @ store ch
strhs r0, [sp] @ store history[channels-ch-1]
bhs .fp_channelloop
add sp, sp, #16 @ compensate for temp storage
ldmpc regs=r4-r11
.size filter_process, .-filter_process
#if ARM_ARCH < 6
/****************************************************************************
* void sample_output_mono(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*/
.section .icode,"ax",%progbits
.global sample_output_mono
.type sample_output_mono, %function
sample_output_mono:
@ input: r0 = this, r1 = src, r2 = dst
stmfd sp!, { r4-r6, lr }
ldr r0, [r0] @ r0 = this->outcount
ldr r3, [r2, #4] @ r2 = dst->p16out
ldr r2, [r1, #4] @ r1 = src->p32[0]
ldrb r1, [r1, #19] @ r2 = src->format.output_scale
mov r4, #1
mov r4, r4, lsl r1 @ r4 = 1 << (scale-1)
mov r4, r4, lsr #1
mvn r14, #0x8000 @ r14 = 0xffff7fff, needed for
@ clipping and masking
subs r0, r0, #1 @
beq .som_singlesample @ Zero? Only one sample!
.somloop:
ldmia r2!, { r5, r6 }
add r5, r5, r4 @ r6 = (r6 + 1<<(scale-1)) >> scale
mov r5, r5, asr r1
mov r12, r5, asr #15
teq r12, r12, asr #31
eorne r5, r14, r5, asr #31 @ Clip (-32768...+32767)
add r6, r6, r4
mov r6, r6, asr r1 @ r7 = (r7 + 1<<(scale-1)) >> scale
mov r12, r6, asr #15
teq r12, r12, asr #31
eorne r6, r14, r6, asr #31 @ Clip (-32768...+32767)
and r5, r5, r14, lsr #16
and r6, r6, r14, lsr #16
orr r5, r5, r5, lsl #16 @ pack first 2 halfwords into 1 word
orr r6, r6, r6, lsl #16 @ pack last 2 halfwords into 1 word
stmia r3!, { r5, r6 }
subs r0, r0, #2
bgt .somloop
ldmpc cond=lt, regs=r4-r6 @ even 'count'? return
.som_singlesample:
ldr r5, [r2] @ do odd sample
add r5, r5, r4
mov r5, r5, asr r1
mov r12, r5, asr #15
teq r12, r12, asr #31
eorne r5, r14, r5, asr #31
and r5, r5, r14, lsr #16 @ pack 2 halfwords into 1 word
orr r5, r5, r5, lsl #16
str r5, [r3]
ldmpc regs=r4-r6
.size sample_output_mono, .-sample_output_mono
/****************************************************************************
* void sample_output_stereo(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*/
.section .icode,"ax",%progbits
.global sample_output_stereo
.type sample_output_stereo, %function
sample_output_stereo:
@ input: r0 = this, r1 = src, r2 = dst
stmfd sp!, { r4-r9, lr }
ldr r0, [r0] @ r0 = this->outcount
ldr r3, [r2, #4] @ r3 = dsp->p16out
ldmib r1, { r2, r5 } @ r2 = src->p32[0], r5 = src->p32[1]
ldrb r1, [r1, #19] @ r1 = src->format.output_scale
mov r4, #1
mov r4, r4, lsl r1 @ r4 = 1 << (scale-1)
mov r4, r4, lsr #1 @
mvn r14, #0x8000 @ r14 = 0xffff7fff, needed for
@ clipping and masking
subs r0, r0, #1 @
beq .sos_singlesample @ Zero? Only one sample!
.sosloop:
ldmia r2!, { r6, r7 } @ 2 left
ldmia r5!, { r8, r9 } @ 2 right
add r6, r6, r4 @ r6 = (r6 + 1<<(scale-1)) >> scale
mov r6, r6, asr r1
mov r12, r6, asr #15
teq r12, r12, asr #31
eorne r6, r14, r6, asr #31 @ Clip (-32768...+32767)
add r7, r7, r4
mov r7, r7, asr r1 @ r7 = (r7 + 1<<(scale-1)) >> scale
mov r12, r7, asr #15
teq r12, r12, asr #31
eorne r7, r14, r7, asr #31 @ Clip (-32768...+32767)
add r8, r8, r4 @ r8 = (r8 + 1<<(scale-1)) >> scale
mov r8, r8, asr r1
mov r12, r8, asr #15
teq r12, r12, asr #31
eorne r8, r14, r8, asr #31 @ Clip (-32768...+32767)
add r9, r9, r4 @ r9 = (r9 + 1<<(scale-1)) >> scale
mov r9, r9, asr r1
mov r12, r9, asr #15
teq r12, r12, asr #31
eorne r9, r14, r9, asr #31 @ Clip (-32768...+32767)
and r6, r6, r14, lsr #16 @ pack first 2 halfwords into 1 word
orr r8, r6, r8, asl #16
and r7, r7, r14, lsr #16 @ pack last 2 halfwords into 1 word
orr r9, r7, r9, asl #16
stmia r3!, { r8, r9 }
subs r0, r0, #2
bgt .sosloop
ldmpc cond=lt, regs=r4-r9 @ even 'count'? return
.sos_singlesample:
ldr r6, [r2] @ left odd sample
ldr r8, [r5] @ right odd sample
add r6, r6, r4 @ r6 = (r7 + 1<<(scale-1)) >> scale
mov r6, r6, asr r1
mov r12, r6, asr #15
teq r12, r12, asr #31
eorne r6, r14, r6, asr #31 @ Clip (-32768...+32767)
add r8, r8, r4 @ r8 = (r8 + 1<<(scale-1)) >> scale
mov r8, r8, asr r1
mov r12, r8, asr #15
teq r12, r12, asr #31
eorne r8, r14, r8, asr #31 @ Clip (-32768...+32767)
and r6, r6, r14, lsr #16 @ pack 2 halfwords into 1 word
orr r8, r6, r8, asl #16
str r8, [r3]
ldmpc regs=r4-r9
.size sample_output_stereo, .-sample_output_stereo
#endif /* ARM_ARCH < 6 */