| /* |
| * WMA compatible decoder |
| * Copyright (c) 2002 The FFmpeg Project. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| /** |
| * @file wmadec.c |
| * WMA compatible decoder. |
| */ |
| |
| #include <codecs.h> |
| #include <codecs/lib/codeclib.h> |
| #include "asf.h" |
| #include "wmadec.h" |
| #include "wmafixed.c" |
| |
| #ifdef CPU_ARM |
| static inline |
| void CMUL(fixed32 *x, fixed32 *y, |
| fixed32 a, fixed32 b, |
| fixed32 t, fixed32 v) |
| { |
| /* This version loses one bit of precision. Could be solved at the cost |
| * of 2 extra cycles if it becomes an issue. */ |
| int x1, y1, l; |
| asm( |
| "smull %[l], %[y1], %[b], %[t] \n" |
| "smlal %[l], %[y1], %[a], %[v] \n" |
| "rsb %[b], %[b], #0 \n" |
| "smull %[l], %[x1], %[a], %[t] \n" |
| "smlal %[l], %[x1], %[b], %[v] \n" |
| : [l] "=&r" (l), [x1]"=&r" (x1), [y1]"=&r" (y1), [b] "+r" (b) |
| : [a] "r" (a), [t] "r" (t), [v] "r" (v) |
| : "cc" |
| ); |
| *x = x1 << 1; |
| *y = y1 << 1; |
| } |
| #elif defined CPU_COLDFIRE |
| static inline |
| void CMUL(fixed32 *x, fixed32 *y, |
| fixed32 a, fixed32 b, |
| fixed32 t, fixed32 v) |
| { |
| asm volatile ("mac.l %[a], %[t], %%acc0;" |
| "msac.l %[b], %[v], %%acc0;" |
| "mac.l %[b], %[t], %%acc1;" |
| "mac.l %[a], %[v], %%acc1;" |
| "movclr.l %%acc0, %[a];" |
| "move.l %[a], (%[x]);" |
| "movclr.l %%acc1, %[a];" |
| "move.l %[a], (%[y]);" |
| : [a] "+&r" (a) |
| : [x] "a" (x), [y] "a" (y), |
| [b] "r" (b), [t] "r" (t), [v] "r" (v) |
| : "cc", "memory"); |
| } |
| #else |
| // PJJ : reinstate macro |
| void CMUL(fixed32 *pre, |
| fixed32 *pim, |
| fixed32 are, |
| fixed32 aim, |
| fixed32 bre, |
| fixed32 bim) |
| { |
| //int64_t x,y; |
| fixed32 _aref = are; |
| fixed32 _aimf = aim; |
| fixed32 _bref = bre; |
| fixed32 _bimf = bim; |
| fixed32 _r1 = fixmul32b(_bref, _aref); |
| fixed32 _r2 = fixmul32b(_bimf, _aimf); |
| fixed32 _r3 = fixmul32b(_bref, _aimf); |
| fixed32 _r4 = fixmul32b(_bimf, _aref); |
| *pre = _r1 - _r2; |
| *pim = _r3 + _r4; |
| |
| } |
| #endif |
| |
| typedef struct CoefVLCTable |
| { |
| int n; /* total number of codes */ |
| const uint32_t *huffcodes; /* VLC bit values */ |
| const uint8_t *huffbits; /* VLC bit size */ |
| const uint16_t *levels; /* table to build run/level tables */ |
| } |
| CoefVLCTable; |
| |
| static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len); |
| int fft_calc(FFTContext *s, FFTComplex *z); |
| |
| |
| //static variables that replace malloced stuff |
| fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows |
| |
| fixed32 *tcosarray[5], *tsinarray[5]; |
| fixed32 tcos0[1024], tcos1[512], tcos2[256], tcos3[128], tcos4[64]; //these are the sin and cos rotations used by the MDCT |
| fixed32 tsin0[1024], tsin1[512], tsin2[256], tsin3[128], tsin4[64]; |
| |
| FFTComplex *exparray[5]; //these are the fft lookup tables |
| |
| uint16_t *revarray[5]; |
| |
| FFTComplex exptab0[512] IBSS_ATTR;//, exptab1[256], exptab2[128], exptab3[64], exptab4[32]; //folded these in! |
| uint16_t revtab0[1024], revtab1[512], revtab2[256], revtab3[128], revtab4[64]; |
| |
| uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables |
| |
| uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336 |
| |
| FFTComplex mdct_tmp[BLOCK_MAX_SIZE] IBSS_ATTR; /* temporary storage for imdct */ |
| |
| //may also be too large by ~ 1KB each? |
| static VLC_TYPE vlcbuf1[6144][2]; |
| static VLC_TYPE vlcbuf2[3584][2]; |
| static VLC_TYPE vlcbuf3[1536][2] IBSS_ATTR; //small so lets try iram |
| |
| |
| |
| |
| #include "wmadata.h" // PJJ |
| |
| /** |
| * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is |
| * done |
| */ |
| int fft_inits(FFTContext *s, int nbits, int inverse) |
| { |
| int i, j, m, n; |
| fixed32 c1, s1; |
| int s2; |
| |
| s->nbits = nbits; |
| n = 1 << nbits; |
| //s->exptab = exparray[10-nbits]; //not needed |
| |
| //s->exptab = av_malloc((n >> 1) * sizeof(FFTComplex)); |
| //if (!s->exptab) |
| // goto fail; |
| s->revtab = revarray[10-nbits]; |
| //s->revtab = av_malloc(n * sizeof(uint16_t)); |
| //if (!s->revtab) |
| // goto fail; |
| s->inverse = inverse; |
| |
| s2 = inverse ? 1 : -1; |
| |
| if(nbits == 10){ //we folded all these stupid tables into the nbits==10 table, so don't make it for the others! |
| //should probably just remove exptab building out of this function and do it higher up for neatness |
| for(i=0;i<(n/2);++i) |
| { |
| //we're going to redo this in CORDIC fixed format! Hold onto your butts |
| |
| /* |
| input to cordic is from 0 ->2pi with 0->0 and 2^32-1 ->2pi |
| output, which is what we'll store the variables as is |
| -1->-2^31 and 1->2^31-1 |
| |
| */ |
| |
| fixed32 ifix = itofix32(i); |
| fixed32 nfix = itofix32(n); |
| fixed32 res = fixdiv32(ifix,nfix); //this is really bad here since nfix can be as large as 1024 ! |
| //also, make this a shift, since its a fucking power of two divide |
| //alpha = fixmul32(TWO_M_PI_F, res); |
| //ct = fixcos32(alpha); //need to correct alpha for 0->2pi scale |
| //st = fixsin32(alpha);// * s2; |
| |
| s1 = fsincos(res<<16, &c1); //does sin and cos in one pass! |
| |
| //I really have my doubts about the correctness of the alpha to cordic mapping here, but it seems to work well enough |
| //double check this later! |
| |
| exptab0[i].re = c1; |
| exptab0[i].im = s1*s2; |
| } |
| } |
| // s->fft_calc = fft_calc; |
| s->exptab1 = NULL; |
| |
| |
| /* compute bit reverse table */ |
| |
| for(i=0;i<n;i++) |
| { |
| m=0; |
| for(j=0;j<nbits;j++) |
| { |
| m |= ((i >> j) & 1) << (nbits-j-1); |
| |
| } |
| |
| s->revtab[i]=m; |
| } |
| return 0; |
| //fail: |
| // av_freep(&s->revtab); |
| // av_freep(&s->exptab); |
| // av_freep(&s->exptab1); |
| return -1; |
| } |
| |
| /* butter fly op */ |
| #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ |
| {\ |
| fixed32 ax, ay, bx, by;\ |
| bx=pre1;\ |
| by=pim1;\ |
| ax=qre1;\ |
| ay=qim1;\ |
| pre = (bx + ax);\ |
| pim = (by + ay);\ |
| qre = (bx - ax);\ |
| qim = (by - ay);\ |
| } |
| |
| |
| int fft_calc_unscaled(FFTContext *s, FFTComplex *z) |
| { |
| int ln = s->nbits; |
| int j, np, np2; |
| int nblocks, nloops; |
| register FFTComplex *p, *q; |
| // FFTComplex *exptab = s->exptab; |
| int l; |
| fixed32 tmp_re, tmp_im; |
| int tabshift = 10-ln; |
| |
| np = 1 << ln; |
| |
| |
| /* pass 0 */ |
| |
| p=&z[0]; |
| j=(np >> 1); |
| do |
| { |
| BF(p[0].re, p[0].im, p[1].re, p[1].im, |
| p[0].re, p[0].im, p[1].re, p[1].im); |
| p+=2; |
| } |
| while (--j != 0); |
| |
| /* pass 1 */ |
| |
| |
| p=&z[0]; |
| j=np >> 2; |
| if (s->inverse) |
| { |
| do |
| { |
| BF(p[0].re, p[0].im, p[2].re, p[2].im, |
| p[0].re, p[0].im, p[2].re, p[2].im); |
| BF(p[1].re, p[1].im, p[3].re, p[3].im, |
| p[1].re, p[1].im, -p[3].im, p[3].re); |
| p+=4; |
| } |
| while (--j != 0); |
| } |
| else |
| { |
| do |
| { |
| BF(p[0].re, p[0].im, p[2].re, p[2].im, |
| p[0].re, p[0].im, p[2].re, p[2].im); |
| BF(p[1].re, p[1].im, p[3].re, p[3].im, |
| p[1].re, p[1].im, p[3].im, -p[3].re); |
| p+=4; |
| } |
| while (--j != 0); |
| } |
| /* pass 2 .. ln-1 */ |
| |
| nblocks = np >> 3; |
| nloops = 1 << 2; |
| np2 = np >> 1; |
| do |
| { |
| p = z; |
| q = z + nloops; |
| for (j = 0; j < nblocks; ++j) |
| { |
| BF(p->re, p->im, q->re, q->im, |
| p->re, p->im, q->re, q->im); |
| |
| p++; |
| q++; |
| for(l = nblocks; l < np2; l += nblocks) |
| { |
| CMUL(&tmp_re, &tmp_im, exptab0[(l<<tabshift)].re, exptab0[(l<<tabshift)].im, q->re, q->im); |
| //CMUL(&tmp_re, &tmp_im, exptab[l].re, exptab[l].im, q->re, q->im); |
| BF(p->re, p->im, q->re, q->im, |
| p->re, p->im, tmp_re, tmp_im); |
| p++; |
| q++; |
| } |
| |
| p += nloops; |
| q += nloops; |
| } |
| nblocks = nblocks >> 1; |
| nloops = nloops << 1; |
| } |
| while (nblocks != 0); |
| return 0; |
| } |
| |
| /* |
| //needless since we're statically allocated |
| void fft_end(FFTContext *s) |
| { |
| // av_freep(&s->revtab); |
| // av_freep(&s->exptab); |
| // av_freep(&s->exptab1); |
| } |
| */ |
| /* VLC decoding */ |
| |
| #define GET_VLC(code, name, gb, table, bits, max_depth)\ |
| {\ |
| int n, index, nb_bits;\ |
| \ |
| index= SHOW_UBITS(name, gb, bits);\ |
| code = table[index][0];\ |
| n = table[index][1];\ |
| \ |
| if(max_depth > 1 && n < 0){\ |
| LAST_SKIP_BITS(name, gb, bits)\ |
| UPDATE_CACHE(name, gb)\ |
| \ |
| nb_bits = -n;\ |
| \ |
| index= SHOW_UBITS(name, gb, nb_bits) + code;\ |
| code = table[index][0];\ |
| n = table[index][1];\ |
| if(max_depth > 2 && n < 0){\ |
| LAST_SKIP_BITS(name, gb, nb_bits)\ |
| UPDATE_CACHE(name, gb)\ |
| \ |
| nb_bits = -n;\ |
| \ |
| index= SHOW_UBITS(name, gb, nb_bits) + code;\ |
| code = table[index][0];\ |
| n = table[index][1];\ |
| }\ |
| }\ |
| SKIP_BITS(name, gb, n)\ |
| } |
| |
| |
| //#define DEBUG_VLC |
| |
| #define GET_DATA(v, table, i, wrap, size) \ |
| {\ |
| const uint8_t *ptr = (const uint8_t *)table + i * wrap;\ |
| switch(size) {\ |
| case 1:\ |
| v = *(const uint8_t *)ptr;\ |
| break;\ |
| case 2:\ |
| v = *(const uint16_t *)ptr;\ |
| break;\ |
| default:\ |
| v = *(const uint32_t *)ptr;\ |
| break;\ |
| }\ |
| } |
| |
| // deprecated, dont use get_vlc for new code, use get_vlc2 instead or use GET_VLC directly |
| static inline int get_vlc(GetBitContext *s, VLC *vlc) |
| { |
| int code; |
| VLC_TYPE (*table)[2]= vlc->table; |
| |
| OPEN_READER(re, s) |
| UPDATE_CACHE(re, s) |
| |
| GET_VLC(code, re, s, table, vlc->bits, 3) |
| |
| CLOSE_READER(re, s) |
| return code; |
| } |
| |
| static int alloc_table(VLC *vlc, int size) |
| { |
| int index; |
| index = vlc->table_size; |
| vlc->table_size += size; |
| if (vlc->table_size > vlc->table_allocated) |
| { |
| // rb->splash(HZ*10, "OH CRAP, TRIED TO REALLOC A STATIC VLC TABLE!"); |
| vlc->table_allocated += (1 << vlc->bits); |
| // vlc->table = av_realloc(vlc->table, |
| // sizeof(VLC_TYPE) * 2 * vlc->table_allocated); |
| if (!vlc->table) |
| return -1; |
| } |
| return index; |
| } |
| |
| static int build_table(VLC *vlc, int table_nb_bits, |
| int nb_codes, |
| const void *bits, int bits_wrap, int bits_size, |
| const void *codes, int codes_wrap, int codes_size, |
| uint32_t code_prefix, int n_prefix) |
| { |
| int i, j, k, n, table_size, table_index, nb, n1, index; |
| uint32_t code; |
| VLC_TYPE (*table)[2]; |
| |
| table_size = 1 << table_nb_bits; |
| table_index = alloc_table(vlc, table_size); |
| if (table_index < 0) |
| return -1; |
| table = &vlc->table[table_index]; |
| |
| for(i=0;i<table_size;i++) |
| { |
| table[i][1] = 0; //bits |
| table[i][0] = -1; //codes |
| } |
| |
| /* first pass: map codes and compute auxillary table sizes */ |
| for(i=0;i<nb_codes;i++) |
| { |
| GET_DATA(n, bits, i, bits_wrap, bits_size); |
| GET_DATA(code, codes, i, codes_wrap, codes_size); |
| /* we accept tables with holes */ |
| if (n <= 0) |
| continue; |
| /* if code matches the prefix, it is in the table */ |
| n -= n_prefix; |
| if (n > 0 && (code >> n) == code_prefix) |
| { |
| if (n <= table_nb_bits) |
| { |
| /* no need to add another table */ |
| j = (code << (table_nb_bits - n)) & (table_size - 1); |
| nb = 1 << (table_nb_bits - n); |
| for(k=0;k<nb;k++) |
| { |
| if (table[j][1] /*bits*/ != 0) |
| { |
| // PJJ exit(-1); |
| } |
| table[j][1] = n; //bits |
| table[j][0] = i; //code |
| j++; |
| } |
| } |
| else |
| { |
| n -= table_nb_bits; |
| j = (code >> n) & ((1 << table_nb_bits) - 1); |
| /* compute table size */ |
| n1 = -table[j][1]; //bits |
| if (n > n1) |
| n1 = n; |
| table[j][1] = -n1; //bits |
| } |
| } |
| } |
| |
| /* second pass : fill auxillary tables recursively */ |
| for(i=0;i<table_size;i++) |
| { |
| n = table[i][1]; //bits |
| if (n < 0) |
| { |
| n = -n; |
| if (n > table_nb_bits) |
| { |
| n = table_nb_bits; |
| table[i][1] = -n; //bits |
| } |
| index = build_table(vlc, n, nb_codes, |
| bits, bits_wrap, bits_size, |
| codes, codes_wrap, codes_size, |
| (code_prefix << table_nb_bits) | i, |
| n_prefix + table_nb_bits); |
| if (index < 0) |
| return -1; |
| /* note: realloc has been done, so reload tables */ |
| table = &vlc->table[table_index]; |
| table[i][0] = index; //code |
| } |
| } |
| return table_index; |
| } |
| |
| /* Build VLC decoding tables suitable for use with get_vlc(). |
| |
| 'nb_bits' set thee decoding table size (2^nb_bits) entries. The |
| bigger it is, the faster is the decoding. But it should not be too |
| big to save memory and L1 cache. '9' is a good compromise. |
| |
| 'nb_codes' : number of vlcs codes |
| |
| 'bits' : table which gives the size (in bits) of each vlc code. |
| |
| 'codes' : table which gives the bit pattern of of each vlc code. |
| |
| 'xxx_wrap' : give the number of bytes between each entry of the |
| 'bits' or 'codes' tables. |
| |
| 'xxx_size' : gives the number of bytes of each entry of the 'bits' |
| or 'codes' tables. |
| |
| 'wrap' and 'size' allows to use any memory configuration and types |
| (byte/word/long) to store the 'bits' and 'codes' tables. |
| */ |
| int init_vlc(VLC *vlc, int nb_bits, int nb_codes, |
| const void *bits, int bits_wrap, int bits_size, |
| const void *codes, int codes_wrap, int codes_size) |
| { |
| vlc->bits = nb_bits; |
| // vlc->table = NULL; |
| // vlc->table_allocated = 0; |
| vlc->table_size = 0; |
| |
| if (build_table(vlc, nb_bits, nb_codes, |
| bits, bits_wrap, bits_size, |
| codes, codes_wrap, codes_size, |
| 0, 0) < 0) |
| { |
| // av_free(vlc->table); |
| return -1; |
| } |
| //dump_table("Tab 1",vlc->table[0],vlc->table_size); |
| //dump_table("Tab 2",vlc->table[1],vlc->table_size); |
| return 0; |
| } |
| |
| /** |
| * init MDCT or IMDCT computation. |
| */ |
| int ff_mdct_init(MDCTContext *s, int nbits, int inverse) |
| { |
| int n, n4, i; |
| // fixed32 alpha; |
| |
| |
| memset(s, 0, sizeof(*s)); |
| n = 1 << nbits; //nbits ranges from 12 to 8 inclusive |
| s->nbits = nbits; |
| s->n = n; |
| n4 = n >> 2; |
| s->tcos = tcosarray[12-nbits]; |
| s->tsin = tsinarray[12-nbits]; |
| //s->tcos = av_malloc(n4 * sizeof(fixed32)); //this allocates between 1024 and 64 elements |
| //if (!s->tcos) |
| // goto fail; |
| //s->tsin = av_malloc(n4 * sizeof(fixed32)); |
| //if (!s->tsin) |
| // goto fail; |
| // |
| for(i=0;i<n4;i++) |
| { |
| //fixed32 pi2 = fixmul32(0x20000, M_PI_F); |
| fixed32 ip = itofix32(i) + 0x2000; |
| ip = ip >> nbits; |
| //ip = fixdiv32(ip,itofix32(n)); // PJJ optimize |
| //alpha = fixmul32(TWO_M_PI_F, ip); |
| //s->tcos[i] = -fixcos32(alpha); //alpha between 0 and pi/2 |
| //s->tsin[i] = -fixsin32(alpha); |
| |
| s->tsin[i] = - fsincos(ip<<16, &(s->tcos[i])); //I can't remember why this works, but it seems to agree for ~24 bits, maybe more! |
| s->tcos[i] *=-1; |
| } |
| if (fft_inits(&s->fft, s->nbits - 2, inverse) < 0) |
| goto fail; |
| return 0; |
| fail: |
| // av_freep(&s->tcos); |
| // av_freep(&s->tsin); |
| return -1; |
| } |
| |
| /** |
| * Compute inverse MDCT of size N = 2^nbits |
| * @param output N samples |
| * @param input N/2 samples |
| * @param tmp N/2 samples |
| */ |
| void ff_imdct_calc(MDCTContext *s, |
| fixed32 *output, |
| const fixed32 *input, |
| FFTComplex *tmp) |
| { |
| int k, n8, n4, n2, n, j,scale; |
| const uint16_t *revtab = s->fft.revtab; |
| const fixed32 *tcos = s->tcos; |
| const fixed32 *tsin = s->tsin; |
| const fixed32 *in1, *in2; |
| FFTComplex *z = (FFTComplex *)tmp; |
| |
| n = 1 << s->nbits; |
| |
| n2 = n >> 1; |
| n4 = n >> 2; |
| n8 = n >> 3; |
| |
| |
| /* pre rotation */ |
| in1 = input; |
| in2 = input + n2 - 1; |
| |
| for(k = 0; k < n4; k++) |
| { |
| j=revtab[k]; |
| CMUL(&z[j].re, &z[j].im, *in2, *in1, tcos[k], tsin[k]); |
| in1 += 2; |
| in2 -= 2; |
| } |
| |
| for(k = 0; k < n4; k++){ |
| z[k].re >>=1; |
| z[k].im >>=1; |
| } |
| |
| //rb->splash(HZ, "in MDCT calc"); |
| scale = fft_calc_unscaled(&s->fft, z); |
| // scale = fft_calc(&s->fft, z); |
| |
| //rb->splash(HZ, "in MDCT calc2"); |
| |
| /* post rotation + reordering */ |
| |
| for(k = 0; k < n4; k++) |
| { |
| CMUL(&z[k].re, &z[k].im, (z[k].re), (z[k].im), tcos[k], tsin[k]); |
| } |
| |
| for(k = 0; k < n8; k++) |
| { |
| fixed32 r1,r2,r3,r4,r1n,r2n,r3n; |
| |
| r1 = z[n8 + k].im; |
| r1n = r1 * -1; |
| r2 = z[n8-1-k].re; |
| r2n = r2 * -1; |
| r3 = z[k+n8].re; |
| r3n = r3 * -1; |
| r4 = z[n8-k-1].im; |
| |
| output[2*k] = r1n; |
| output[n2-1-2*k] = r1; |
| |
| output[2*k+1] = r2; |
| output[n2-1-2*k-1] = r2n; |
| |
| output[n2 + 2*k]= r3n; |
| output[n-1- 2*k]= r3n; |
| |
| output[n2 + 2*k+1]= r4; |
| output[n-2 - 2 * k] = r4; |
| } |
| |
| |
| |
| |
| } |
| |
| void ff_mdct_end(MDCTContext *s) |
| { |
| (void)s; |
| |
| // av_freep(&s->tcos); |
| // av_freep(&s->tsin); |
| // fft_end(&s->fft); |
| } |
| |
| /* |
| * Helper functions for wma_window. |
| * TODO: Optimize these to work with 1.31 format trig functions |
| * as was done for the MDCT rotation code |
| */ |
| |
| static void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, const fixed32 *src2, int src3, int len, int step){ |
| int i; |
| for(i=0; i<len; i++) |
| dst[i*step] = fixmul32(src0[i], src1[i]) + src2[i] + src3; |
| } |
| |
| static void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){ |
| int i; |
| src1 += len-1; |
| for(i=0; i<len; i++) |
| dst[i] = fixmul32(src0[i], src1[-i]); |
| } |
| |
| /** |
| * Apply MDCT window and add into output. |
| * |
| * We ensure that when the windows overlap their squared sum |
| * is always 1 (MDCT reconstruction rule). |
| */ |
| static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out) |
| { |
| //float *in = s->output; |
| int block_len, bsize, n; |
| |
| /* left part */ |
| if (s->block_len_bits <= s->prev_block_len_bits) { |
| block_len = s->block_len; |
| bsize = s->frame_len_bits - s->block_len_bits; |
| |
| vector_fmul_add_add(out, in, s->windows[bsize], |
| out, 0, block_len, 1); |
| |
| } else { |
| block_len = 1 << s->prev_block_len_bits; |
| n = (s->block_len - block_len) / 2; |
| bsize = s->frame_len_bits - s->prev_block_len_bits; |
| |
| vector_fmul_add_add(out+n, in+n, s->windows[bsize], |
| out+n, 0, block_len, 1); |
| |
| memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32)); |
| } |
| |
| out += s->block_len; |
| in += s->block_len; |
| |
| /* right part */ |
| if (s->block_len_bits <= s->next_block_len_bits) { |
| block_len = s->block_len; |
| bsize = s->frame_len_bits - s->block_len_bits; |
| |
| vector_fmul_reverse(out, in, s->windows[bsize], block_len); |
| |
| } else { |
| block_len = 1 << s->next_block_len_bits; |
| n = (s->block_len - block_len) / 2; |
| bsize = s->frame_len_bits - s->next_block_len_bits; |
| |
| memcpy(out, in, n*sizeof(fixed32)); |
| |
| vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len); |
| |
| memset(out+n+block_len, 0, n*sizeof(fixed32)); |
| } |
| } |
| |
| |
| |
| |
| /* XXX: use same run/length optimization as mpeg decoders */ |
| static void init_coef_vlc(VLC *vlc, |
| uint16_t **prun_table, uint16_t **plevel_table, |
| const CoefVLCTable *vlc_table, int tab) |
| { |
| int n = vlc_table->n; |
| const uint8_t *table_bits = vlc_table->huffbits; |
| const uint32_t *table_codes = vlc_table->huffcodes; |
| const uint16_t *levels_table = vlc_table->levels; |
| uint16_t *run_table, *level_table; |
| const uint16_t *p; |
| int i, l, j, level; |
| |
| |
| init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4); |
| |
| run_table = runtabarray[tab]; |
| //run_table = av_malloc(n * sizeof(uint16_t)); //max n should be 1336 |
| |
| level_table= levtabarray[tab]; |
| //level_table = av_malloc(n * sizeof(uint16_t)); |
| p = levels_table; |
| i = 2; |
| level = 1; |
| while (i < n) |
| { |
| l = *p++; |
| for(j=0;j<l;++j) |
| { |
| run_table[i] = j; |
| level_table[i] = level; |
| ++i; |
| } |
| ++level; |
| } |
| *prun_table = run_table; |
| *plevel_table = level_table; |
| } |
| |
| int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx) |
| { |
| //WMADecodeContext *s = avctx->priv_data; |
| int i, flags1, flags2; |
| fixed32 *window; |
| uint8_t *extradata; |
| fixed64 bps1; |
| fixed32 high_freq; |
| fixed64 bps; |
| int sample_rate1; |
| int coef_vlc_table; |
| // int filehandle; |
| #ifdef CPU_COLDFIRE |
| coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE); |
| #endif |
| |
| s->sample_rate = wfx->rate; |
| s->nb_channels = wfx->channels; |
| s->bit_rate = wfx->bitrate; |
| s->block_align = wfx->blockalign; |
| |
| if (wfx->codec_id == ASF_CODEC_ID_WMAV1){ |
| s->version = 1; |
| }else{ |
| s->version = 2; |
| } |
| |
| /* extract flag infos */ |
| flags1 = 0; |
| flags2 = 0; |
| extradata = wfx->data; |
| if (s->version == 1 && wfx->datalen >= 4) { |
| flags1 = extradata[0] | (extradata[1] << 8); |
| flags2 = extradata[2] | (extradata[3] << 8); |
| }else if (s->version == 2 && wfx->datalen >= 6){ |
| flags1 = extradata[0] | (extradata[1] << 8) | |
| (extradata[2] << 16) | (extradata[3] << 24); |
| flags2 = extradata[4] | (extradata[5] << 8); |
| } |
| s->use_exp_vlc = flags2 & 0x0001; |
| s->use_bit_reservoir = flags2 & 0x0002; |
| s->use_variable_block_len = flags2 & 0x0004; |
| |
| /* compute MDCT block size */ |
| if (s->sample_rate <= 16000){ |
| s->frame_len_bits = 9; |
| }else if (s->sample_rate <= 22050 || |
| (s->sample_rate <= 32000 && s->version == 1)){ |
| s->frame_len_bits = 10; |
| }else{ |
| s->frame_len_bits = 11; |
| } |
| s->frame_len = 1 << s->frame_len_bits; |
| if (s-> use_variable_block_len) |
| { |
| int nb_max, nb; |
| nb = ((flags2 >> 3) & 3) + 1; |
| if ((s->bit_rate / s->nb_channels) >= 32000) |
| { |
| nb += 2; |
| } |
| nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7 |
| if (nb > nb_max) |
| nb = nb_max; |
| s->nb_block_sizes = nb + 1; |
| } |
| else |
| { |
| s->nb_block_sizes = 1; |
| } |
| |
| /* init rate dependant parameters */ |
| s->use_noise_coding = 1; |
| high_freq = fixmul64byfixed(itofix64(s->sample_rate), 0x8000); |
| |
| |
| /* if version 2, then the rates are normalized */ |
| sample_rate1 = s->sample_rate; |
| if (s->version == 2) |
| { |
| if (sample_rate1 >= 44100) |
| sample_rate1 = 44100; |
| else if (sample_rate1 >= 22050) |
| sample_rate1 = 22050; |
| else if (sample_rate1 >= 16000) |
| sample_rate1 = 16000; |
| else if (sample_rate1 >= 11025) |
| sample_rate1 = 11025; |
| else if (sample_rate1 >= 8000) |
| sample_rate1 = 8000; |
| } |
| |
| fixed64 tmp = itofix64(s->bit_rate); |
| fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate); |
| bps = fixdiv64(tmp, tmp2); |
| fixed64 tim = fixmul64byfixed(bps, s->frame_len); |
| fixed64 tmpi = fixdiv64(tim,itofix64(8)); |
| s->byte_offset_bits = av_log2(fixtoi64(tmpi)) + 2; |
| |
| /* compute high frequency value and choose if noise coding should |
| be activated */ |
| bps1 = bps; |
| if (s->nb_channels == 2) |
| bps1 = fixmul32(bps,0x1999a); |
| if (sample_rate1 == 44100) |
| { |
| if (bps1 >= 0x9c29) |
| s->use_noise_coding = 0; |
| else |
| high_freq = fixmul64byfixed(high_freq,0x6666); |
| } |
| else if (sample_rate1 == 22050) |
| { |
| if (bps1 >= 0x128f6) |
| s->use_noise_coding = 0; |
| else if (bps1 >= 0xb852) |
| high_freq = fixmul64byfixed(high_freq,0xb333); |
| else |
| high_freq = fixmul64byfixed(high_freq,0x999a); |
| } |
| else if (sample_rate1 == 16000) |
| { |
| if (bps > 0x8000) |
| high_freq = fixmul64byfixed(high_freq,0x8000); |
| else |
| high_freq = fixmul64byfixed(high_freq,0x4ccd); |
| } |
| else if (sample_rate1 == 11025) |
| { |
| high_freq = fixmul64byfixed(high_freq,0xb3333); |
| } |
| else if (sample_rate1 == 8000) |
| { |
| if (bps <= 0xa000) |
| { |
| high_freq = fixmul64byfixed(high_freq,0x8000); |
| } |
| else if (bps > 0xc000) |
| { |
| s->use_noise_coding = 0; |
| } |
| else |
| { |
| high_freq = fixmul64byfixed(high_freq,0xa666); |
| } |
| } |
| else |
| { |
| if (bps >= 0xcccd) |
| { |
| high_freq = fixmul64byfixed(high_freq,0xc000); |
| } |
| else if (bps >= 0x999a) |
| { |
| high_freq = fixmul64byfixed(high_freq,0x999a); |
| } |
| else |
| { |
| high_freq = fixmul64byfixed(high_freq,0x8000); |
| } |
| } |
| |
| /* compute the scale factor band sizes for each MDCT block size */ |
| { |
| int a, b, pos, lpos, k, block_len, i, j, n; |
| const uint8_t *table; |
| |
| if (s->version == 1) |
| { |
| s->coefs_start = 3; |
| } |
| else |
| { |
| s->coefs_start = 0; |
| } |
| for(k = 0; k < s->nb_block_sizes; ++k) |
| { |
| block_len = s->frame_len >> k; |
| |
| if (s->version == 1) |
| { |
| lpos = 0; |
| for(i=0;i<25;++i) |
| { |
| a = wma_critical_freqs[i]; |
| b = s->sample_rate; |
| pos = ((block_len * 2 * a) + (b >> 1)) / b; |
| if (pos > block_len) |
| pos = block_len; |
| s->exponent_bands[0][i] = pos - lpos; |
| if (pos >= block_len) |
| { |
| ++i; |
| break; |
| } |
| lpos = pos; |
| } |
| s->exponent_sizes[0] = i; |
| } |
| else |
| { |
| /* hardcoded tables */ |
| table = NULL; |
| a = s->frame_len_bits - BLOCK_MIN_BITS - k; |
| if (a < 3) |
| { |
| if (s->sample_rate >= 44100) |
| table = exponent_band_44100[a]; |
| else if (s->sample_rate >= 32000) |
| table = exponent_band_32000[a]; |
| else if (s->sample_rate >= 22050) |
| table = exponent_band_22050[a]; |
| } |
| if (table) |
| { |
| n = *table++; |
| for(i=0;i<n;++i) |
| s->exponent_bands[k][i] = table[i]; |
| s->exponent_sizes[k] = n; |
| } |
| else |
| { |
| j = 0; |
| lpos = 0; |
| for(i=0;i<25;++i) |
| { |
| a = wma_critical_freqs[i]; |
| b = s->sample_rate; |
| pos = ((block_len * 2 * a) + (b << 1)) / (4 * b); |
| pos <<= 2; |
| if (pos > block_len) |
| pos = block_len; |
| if (pos > lpos) |
| s->exponent_bands[k][j++] = pos - lpos; |
| if (pos >= block_len) |
| break; |
| lpos = pos; |
| } |
| s->exponent_sizes[k] = j; |
| } |
| } |
| |
| /* max number of coefs */ |
| s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k; |
| /* high freq computation */ |
| fixed64 tmp = itofix64(block_len<<2); |
| tmp = fixmul64byfixed(tmp,high_freq); |
| fixed64 tmp2 = itofix64(s->sample_rate); |
| tmp2 += 0x8000; |
| s->high_band_start[k] = fixtoi64(fixdiv64(tmp,tmp2)); |
| |
| /* |
| s->high_band_start[k] = (int)((block_len * 2 * high_freq) / |
| s->sample_rate + 0.5);*/ |
| |
| n = s->exponent_sizes[k]; |
| j = 0; |
| pos = 0; |
| for(i=0;i<n;++i) |
| { |
| int start, end; |
| start = pos; |
| pos += s->exponent_bands[k][i]; |
| end = pos; |
| if (start < s->high_band_start[k]) |
| start = s->high_band_start[k]; |
| if (end > s->coefs_end[k]) |
| end = s->coefs_end[k]; |
| if (end > start) |
| s->exponent_high_bands[k][j++] = end - start; |
| } |
| s->exponent_high_sizes[k] = j; |
| } |
| } |
| |
| /* init MDCT */ |
| tcosarray[0] = tcos0; tcosarray[1] = tcos1; tcosarray[2] = tcos2; tcosarray[3] = tcos3;tcosarray[4] = tcos4; |
| tsinarray[0] = tsin0; tsinarray[1] = tsin1; tsinarray[2] = tsin2; tsinarray[3] = tsin3;tsinarray[4] = tsin4; |
| |
| exparray[0] = exptab0; //exparray[1] = exptab1; exparray[2] = exptab2; exparray[3] = exptab3; exparray[4] = exptab4; |
| revarray[0]=revtab0; revarray[1]=revtab1; revarray[2]=revtab2; revarray[3]=revtab3; revarray[4]=revtab4; |
| |
| s->mdct_tmp = mdct_tmp; /* temporary storage for imdct */ |
| for(i = 0; i < s->nb_block_sizes; ++i) |
| { |
| ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1); |
| } |
| |
| /*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage. |
| * In the worst case you can have 5 window sizes, 128 doubling up 2048 |
| * Smaller windows are handled differently. |
| * Since we don't have malloc, just statically allocate this |
| */ |
| fixed32 *temp[5]; |
| temp[0] = stat0; |
| temp[1] = stat1; |
| temp[2] = stat2; |
| temp[3] = stat3; |
| temp[4] = stat4; |
| |
| /* init MDCT windows : simple sinus window */ |
| for(i = 0; i < s->nb_block_sizes; i++) |
| { |
| int n, j; |
| fixed32 alpha; |
| n = 1 << (s->frame_len_bits - i); |
| //window = av_malloc(sizeof(fixed32) * n); |
| window = temp[i]; |
| |
| //fixed32 n2 = itofix32(n<<1); //2x the window length |
| //alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1) |
| |
| //alpha = M_PI_F>>(s->frame_len_bits - i+1); |
| alpha = (1<<15)>>(s->frame_len_bits - i+1); /* this calculates 0.5/(2*n) */ |
| for(j=0;j<n;++j) |
| { |
| fixed32 j2 = itofix32(j) + 0x8000; |
| window[j] = fsincos(fixmul32(j2,alpha)<<16, 0); //alpha between 0 and pi/2 |
| |
| } |
| //printf("created window\n"); |
| s->windows[i] = window; |
| //printf("assigned window\n"); |
| } |
| |
| s->reset_block_lengths = 1; |
| |
| if (s->use_noise_coding) |
| { |
| /* init the noise generator */ |
| if (s->use_exp_vlc) |
| { |
| s->noise_mult = 0x51f; |
| } |
| else |
| { |
| s->noise_mult = 0xa3d; |
| } |
| |
| |
| { |
| unsigned int seed; |
| fixed32 norm; |
| seed = 1; |
| norm = 0; // PJJ: near as makes any diff to 0! |
| for (i=0;i<NOISE_TAB_SIZE;++i) |
| { |
| seed = seed * 314159 + 1; |
| s->noise_table[i] = itofix32((int)seed) * norm; |
| } |
| } |
| |
| init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits), |
| hgain_huffbits, 1, 1, |
| hgain_huffcodes, 2, 2); |
| } |
| |
| if (s->use_exp_vlc) |
| { |
| s->exp_vlc.table = vlcbuf3; |
| s->exp_vlc.table_allocated = 1536; |
| init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits), |
| scale_huffbits, 1, 1, |
| scale_huffcodes, 4, 4); |
| } |
| else |
| { |
| wma_lsp_to_curve_init(s, s->frame_len); |
| } |
| |
| /* choose the VLC tables for the coefficients */ |
| coef_vlc_table = 2; |
| if (s->sample_rate >= 32000) |
| { |
| if (bps1 < 0xb852) |
| coef_vlc_table = 0; |
| else if (bps1 < 0x128f6) |
| coef_vlc_table = 1; |
| } |
| |
| runtabarray[0] = runtab0; runtabarray[1] = runtab1; |
| levtabarray[0] = levtab0; levtabarray[1] = levtab1; |
| |
| s->coef_vlc[0].table = vlcbuf1; |
| s->coef_vlc[0].table_allocated = 24576/4; |
| s->coef_vlc[1].table = vlcbuf2; |
| s->coef_vlc[1].table_allocated = 14336/4; |
| |
| init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], |
| &coef_vlcs[coef_vlc_table * 2], 0); |
| init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], |
| &coef_vlcs[coef_vlc_table * 2 + 1], 1); |
| |
| return 0; |
| } |
| |
| |
| /* compute x^-0.25 with an exponent and mantissa table. We use linear |
| interpolation to reduce the mantissa table size at a small speed |
| expense (linear interpolation approximately doubles the number of |
| bits of precision). */ |
| static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x) |
| { |
| union { |
| fixed64 f; |
| unsigned int v; |
| } u, t; |
| unsigned int e, m; |
| fixed64 a, b; |
| |
| u.f = x; |
| e = u.v >> 23; |
| m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1); |
| /* build interpolation scale: 1 <= t < 2. */ |
| t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23); |
| a = s->lsp_pow_m_table1[m]; |
| b = s->lsp_pow_m_table2[m]; |
| return lsp_pow_e_table[e] * (a + b * t.f); |
| } |
| |
| static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len) |
| { |
| fixed32 wdel, a, b; |
| int i, m; |
| |
| wdel = fixdiv32(M_PI_F, itofix32(frame_len)); |
| for (i=0; i<frame_len; ++i) |
| { |
| s->lsp_cos_table[i] = 0x20000 * fixcos32(wdel * i); //wdel*i between 0 and pi |
| |
| } |
| |
| |
| /* NOTE: these two tables are needed to avoid two operations in |
| pow_m1_4 */ |
| b = itofix32(1); |
| int ix = 0; |
| for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) |
| { |
| m = (1 << LSP_POW_BITS) + i; |
| a = m * (0x8000 / (1 << LSP_POW_BITS)); //PJJ |
| a = pow_a_table[ix++]; // PJJ : further refinement |
| s->lsp_pow_m_table1[i] = 2 * a - b; |
| s->lsp_pow_m_table2[i] = b - a; |
| b = a; |
| } |
| } |
| |
| /* NOTE: We use the same code as Vorbis here */ |
| /* XXX: optimize it further with SSE/3Dnow */ |
| static void wma_lsp_to_curve(WMADecodeContext *s, |
| fixed32 *out, |
| fixed32 *val_max_ptr, |
| int n, |
| fixed32 *lsp) |
| { |
| int i, j; |
| fixed32 p, q, w, v, val_max; |
| |
| val_max = 0; |
| for(i=0;i<n;++i) |
| { |
| p = 0x8000; |
| q = 0x8000; |
| w = s->lsp_cos_table[i]; |
| for (j=1;j<NB_LSP_COEFS;j+=2) |
| { |
| q *= w - lsp[j - 1]; |
| p *= w - lsp[j]; |
| } |
| p *= p * (0x20000 - w); |
| q *= q * (0x20000 + w); |
| v = p + q; |
| v = pow_m1_4(s, v); // PJJ |
| if (v > val_max) |
| val_max = v; |
| out[i] = v; |
| } |
| *val_max_ptr = val_max; |
| } |
| |
| /* decode exponents coded with LSP coefficients (same idea as Vorbis) */ |
| static void decode_exp_lsp(WMADecodeContext *s, int ch) |
| { |
| fixed32 lsp_coefs[NB_LSP_COEFS]; |
| int val, i; |
| |
| for (i = 0; i < NB_LSP_COEFS; ++i) |
| { |
| if (i == 0 || i >= 8) |
| val = get_bits(&s->gb, 3); |
| else |
| val = get_bits(&s->gb, 4); |
| lsp_coefs[i] = lsp_codebook[i][val]; |
| } |
| |
| wma_lsp_to_curve(s, |
| s->exponents[ch], |
| &s->max_exponent[ch], |
| s->block_len, |
| lsp_coefs); |
| } |
| |
| /* decode exponents coded with VLC codes */ |
| static int decode_exp_vlc(WMADecodeContext *s, int ch) |
| { |
| int last_exp, n, code; |
| const uint16_t *ptr, *band_ptr; |
| fixed32 v, max_scale; |
| fixed32 *q,*q_end; |
| |
| band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits]; |
| ptr = band_ptr; |
| q = s->exponents[ch]; |
| q_end = q + s->block_len; |
| max_scale = 0; |
| |
| |
| if (s->version == 1) //wmav1 only |
| { |
| last_exp = get_bits(&s->gb, 5) + 10; |
| /* XXX: use a table */ |
| v = pow_10_to_yover16[last_exp]; |
| max_scale = v; |
| n = *ptr++; |
| do |
| { |
| *q++ = v; |
| } |
| while (--n); |
| } |
| last_exp = 36; |
| |
| while (q < q_end) |
| { |
| code = get_vlc(&s->gb, &s->exp_vlc); |
| if (code < 0) |
| { |
| return -1; |
| } |
| /* NOTE: this offset is the same as MPEG4 AAC ! */ |
| last_exp += code - 60; |
| /* XXX: use a table */ |
| v = pow_10_to_yover16[last_exp]; |
| if (v > max_scale) |
| { |
| max_scale = v; |
| } |
| n = *ptr++; |
| do |
| { |
| *q++ = v; |
| |
| } |
| while (--n); |
| } |
| |
| s->max_exponent[ch] = max_scale; |
| return 0; |
| } |
| |
| /* return 0 if OK. return 1 if last block of frame. return -1 if |
| unrecorrable error. */ |
| static int wma_decode_block(WMADecodeContext *s) |
| { |
| int n, v, a, ch, code, bsize; |
| int coef_nb_bits, total_gain; |
| //static fixed32 window[BLOCK_MAX_SIZE * 2]; //crap can't do this locally on the device! its big as the whole stack |
| int nb_coefs[MAX_CHANNELS]; |
| fixed32 mdct_norm; |
| |
| // printf("***decode_block: %d:%d (%d)\n", s->frame_count - 1, s->block_num, s->block_len); |
| /* compute current block length */ |
| if (s->use_variable_block_len) |
| { |
| n = av_log2(s->nb_block_sizes - 1) + 1; |
| |
| if (s->reset_block_lengths) |
| { |
| s->reset_block_lengths = 0; |
| v = get_bits(&s->gb, n); |
| if (v >= s->nb_block_sizes) |
| { |
| return -2; |
| } |
| s->prev_block_len_bits = s->frame_len_bits - v; |
| v = get_bits(&s->gb, n); |
| if (v >= s->nb_block_sizes) |
| { |
| return -3; |
| } |
| s->block_len_bits = s->frame_len_bits - v; |
| } |
| else |
| { |
| /* update block lengths */ |
| s->prev_block_len_bits = s->block_len_bits; |
| s->block_len_bits = s->next_block_len_bits; |
| } |
| v = get_bits(&s->gb, n); |
| |
| //rb->fdprintf(filehandle,"v %d \n prev_block_len_bits %d\n block_len_bits %d\n", v, s->prev_block_len_bits, s->block_len_bits); |
| //rb->close(filehandle); |
| |
| LOGF("v was %d", v); |
| if (v >= s->nb_block_sizes) |
| { |
| // rb->splash(HZ*4, "v was %d", v); //5, 7 |
| return -4; //this is it |
| } |
| else{ |
| //rb->splash(HZ, "passed v block (%d)!", v); |
| } |
| s->next_block_len_bits = s->frame_len_bits - v; |
| } |
| else |
| { |
| /* fixed block len */ |
| s->next_block_len_bits = s->frame_len_bits; |
| s->prev_block_len_bits = s->frame_len_bits; |
| s->block_len_bits = s->frame_len_bits; |
| } |
| /* now check if the block length is coherent with the frame length */ |
| s->block_len = 1 << s->block_len_bits; |
| |
| if ((s->block_pos + s->block_len) > s->frame_len) |
| { |
| return -5; |
| } |
| |
| if (s->nb_channels == 2) |
| { |
| s->ms_stereo = get_bits(&s->gb, 1); |
| } |
| v = 0; |
| for (ch = 0; ch < s->nb_channels; ++ch) |
| { |
| a = get_bits(&s->gb, 1); |
| s->channel_coded[ch] = a; |
| v |= a; |
| } |
| /* if no channel coded, no need to go further */ |
| /* XXX: fix potential framing problems */ |
| if (!v) |
| { |
| goto next; |
| } |
| |
| bsize = s->frame_len_bits - s->block_len_bits; |
| |
| /* read total gain and extract corresponding number of bits for |
| coef escape coding */ |
| total_gain = 1; |
| for(;;) |
| { |
| a = get_bits(&s->gb, 7); |
| total_gain += a; |
| if (a != 127) |
| { |
| break; |
| } |
| } |
| |
| if (total_gain < 15) |
| coef_nb_bits = 13; |
| else if (total_gain < 32) |
| coef_nb_bits = 12; |
| else if (total_gain < 40) |
| coef_nb_bits = 11; |
| else if (total_gain < 45) |
| coef_nb_bits = 10; |
| else |
| coef_nb_bits = 9; |
| /* compute number of coefficients */ |
| n = s->coefs_end[bsize] - s->coefs_start; |
| |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| nb_coefs[ch] = n; |
| } |
| /* complex coding */ |
| |
| if (s->use_noise_coding) |
| { |
| |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| int i, n, a; |
| n = s->exponent_high_sizes[bsize]; |
| for(i=0;i<n;++i) |
| { |
| a = get_bits(&s->gb, 1); |
| s->high_band_coded[ch][i] = a; |
| /* if noise coding, the coefficients are not transmitted */ |
| if (a) |
| nb_coefs[ch] -= s->exponent_high_bands[bsize][i]; |
| } |
| } |
| } |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| int i, n, val, code; |
| |
| n = s->exponent_high_sizes[bsize]; |
| val = (int)0x80000000; |
| for(i=0;i<n;++i) |
| { |
| if (s->high_band_coded[ch][i]) |
| { |
| if (val == (int)0x80000000) |
| { |
| val = get_bits(&s->gb, 7) - 19; |
| } |
| else |
| { |
| code = get_vlc(&s->gb, &s->hgain_vlc); |
| if (code < 0) |
| { |
| return -6; |
| } |
| val += code - 18; |
| } |
| s->high_band_values[ch][i] = val; |
| } |
| } |
| } |
| } |
| } |
| |
| /* exponents can be reused in short blocks. */ |
| if ((s->block_len_bits == s->frame_len_bits) || get_bits(&s->gb, 1)) { |
| |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| if (s->use_exp_vlc) |
| { |
| if (decode_exp_vlc(s, ch) < 0) |
| { |
| return -7; |
| } |
| } |
| else |
| { |
| decode_exp_lsp(s, ch); |
| } |
| s->exponents_bsize[ch] = bsize; |
| } |
| } |
| } |
| |
| /* parse spectral coefficients : just RLE encoding */ |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| VLC *coef_vlc; |
| int level, run, sign, tindex; |
| int16_t *ptr, *eptr; |
| const int16_t *level_table, *run_table; |
| |
| /* special VLC tables are used for ms stereo because |
| there is potentially less energy there */ |
| tindex = (ch == 1 && s->ms_stereo); |
| coef_vlc = &s->coef_vlc[tindex]; |
| run_table = s->run_table[tindex]; |
| level_table = s->level_table[tindex]; |
| /* XXX: optimize */ |
| ptr = &s->coefs1[ch][0]; |
| eptr = ptr + nb_coefs[ch]; |
| memset(ptr, 0, s->block_len * sizeof(int16_t)); |
| |
| |
| |
| for(;;) |
| { |
| code = get_vlc(&s->gb, coef_vlc); |
| if (code < 0) |
| { |
| return -8; |
| } |
| if (code == 1) |
| { |
| /* EOB */ |
| break; |
| } |
| else if (code == 0) |
| { |
| /* escape */ |
| level = get_bits(&s->gb, coef_nb_bits); |
| /* NOTE: this is rather suboptimal. reading |
| block_len_bits would be better */ |
| run = get_bits(&s->gb, s->frame_len_bits); |
| } |
| else |
| { |
| /* normal code */ |
| run = run_table[code]; |
| level = level_table[code]; |
| } |
| sign = get_bits(&s->gb, 1); |
| if (!sign) |
| level = -level; |
| ptr += run; |
| if (ptr >= eptr) |
| { |
| return -9; |
| } |
| *ptr++ = level; |
| |
| |
| /* NOTE: EOB can be omitted */ |
| if (ptr >= eptr) |
| break; |
| } |
| } |
| if (s->version == 1 && s->nb_channels >= 2) |
| { |
| align_get_bits(&s->gb); |
| } |
| } |
| |
| { |
| int n4 = s->block_len >> 1; |
| //mdct_norm = 0x10000; |
| //mdct_norm = fixdiv32(mdct_norm,itofix32(n4)); |
| |
| mdct_norm = 0x10000>>(s->block_len_bits-1); //theres no reason to do a divide by two in fixed precision ... |
| |
| if (s->version == 1) |
| { |
| fixed32 tmp = fixsqrt32(itofix32(n4)); |
| mdct_norm *= tmp; // PJJ : exercise this path |
| } |
| } |
| |
| |
| /* finally compute the MDCT coefficients */ |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| int16_t *coefs1; |
| fixed32 *exponents, *exp_ptr; |
| fixed32 *coefs, atemp; |
| fixed64 mult; |
| fixed64 mult1; |
| fixed32 noise; |
| int i, j, n, n1, last_high_band, esize; |
| fixed32 exp_power[HIGH_BAND_MAX_SIZE]; |
| |
| //total_gain, coefs1, mdctnorm are lossless |
| |
| coefs1 = s->coefs1[ch]; |
| exponents = s->exponents[ch]; |
| esize = s->exponents_bsize[ch]; |
| mult = fixdiv64(pow_table[total_gain],Fixed32To64(s->max_exponent[ch])); |
| // mul = fixtof64(pow_table[total_gain])/(s->block_len/2)/fixtof64(s->max_exponent[ch]); |
| |
| mult = fixmul64byfixed(mult, mdct_norm); //what the hell? This is actually fixed64*2^16! |
| coefs = s->coefs[ch]; //VLC exponenents are used to get MDCT coef here! |
| |
| n=0; |
| |
| if (s->use_noise_coding) |
| { |
| mult1 = mult; |
| |
| /* very low freqs : noise */ |
| for(i = 0;i < s->coefs_start; ++i) |
| { |
| *coefs++ = fixmul32(fixmul32(s->noise_table[s->noise_index],(*exponents++)),Fixed32From64(mult1)); |
| s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
| } |
| |
| n1 = s->exponent_high_sizes[bsize]; |
| |
| /* compute power of high bands */ |
| exp_ptr = exponents + |
| s->high_band_start[bsize] - |
| s->coefs_start; |
| last_high_band = 0; /* avoid warning */ |
| for (j=0;j<n1;++j) |
| { |
| n = s->exponent_high_bands[s->frame_len_bits - |
| s->block_len_bits][j]; |
| if (s->high_band_coded[ch][j]) |
| { |
| fixed32 e2, v; |
| e2 = 0; |
| for(i = 0;i < n; ++i) |
| { |
| v = exp_ptr[i]; |
| e2 += v * v; |
| } |
| exp_power[j] = fixdiv32(e2,n); |
| last_high_band = j; |
| } |
| exp_ptr += n; |
| } |
| |
| /* main freqs and high freqs */ |
| for(j=-1;j<n1;++j) |
| { |
| if (j < 0) |
| { |
| n = s->high_band_start[bsize] - |
| s->coefs_start; |
| } |
| else |
| { |
| n = s->exponent_high_bands[s->frame_len_bits - |
| s->block_len_bits][j]; |
| } |
| if (j >= 0 && s->high_band_coded[ch][j]) |
| { |
| /* use noise with specified power */ |
| fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]); |
| mult1 = (fixed64)fixsqrt32(tmp); |
| /* XXX: use a table */ |
| mult1 = mult1 * pow_table[s->high_band_values[ch][j]]; |
| mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult)); |
| mult1 = fixmul64byfixed(mult1,mdct_norm); |
| for(i = 0;i < n; ++i) |
| { |
| noise = s->noise_table[s->noise_index]; |
| s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
| *coefs++ = fixmul32(fixmul32(*exponents,noise),Fixed32From64(mult1)); |
| ++exponents; |
| } |
| } |
| else |
| { |
| /* coded values + small noise */ |
| for(i = 0;i < n; ++i) |
| { |
| // PJJ: check code path |
| noise = s->noise_table[s->noise_index]; |
| s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
| *coefs++ = fixmul32(fixmul32(((*coefs1++) + noise),*exponents),mult); |
| ++exponents; |
| } |
| } |
| } |
| |
| /* very high freqs : noise */ |
| n = s->block_len - s->coefs_end[bsize]; |
| mult1 = fixmul32(mult,exponents[-1]); |
| for (i = 0; i < n; ++i) |
| { |
| *coefs++ = fixmul32(s->noise_table[s->noise_index],Fixed32From64(mult1)); |
| s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
| } |
| } |
| else |
| { |
| |
| /* XXX: optimize more */ |
| for(i = 0;i < s->coefs_start; ++i) |
| *coefs++ = 0; //why do we do this step?! |
| n = nb_coefs[ch]; |
| |
| |
| |
| |
| for(i = 0;i < n; ++i) |
| { |
| |
| atemp = (fixed32)(coefs1[i]*mult>>16); |
| //atemp= ftofix32(coefs1[i] * fixtof64(exponents[i]) * fixtof64(mult>>16)); //this "works" in the sense that the mdcts converge |
| |
| //this can still overflow in rare cases |
| //running a full scale value square wave through here does bad things |
| |
| *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]); |
| |
| |
| } |
| n = s->block_len - s->coefs_end[bsize]; |
| for(i = 0;i < n; ++i) |
| *coefs++ = 0; |
| } |
| } |
| } |
| |
| |
| |
| if (s->ms_stereo && s->channel_coded[1]) |
| { |
| fixed32 a, b; |
| int i; |
| |
| /* nominal case for ms stereo: we do it before mdct */ |
| /* no need to optimize this case because it should almost |
| never happen */ |
| if (!s->channel_coded[0]) |
| { |
| memset(s->coefs[0], 0, sizeof(fixed32) * s->block_len); |
| s->channel_coded[0] = 1; |
| } |
| |
| for(i = 0; i < s->block_len; ++i) |
| { |
| a = s->coefs[0][i]; |
| b = s->coefs[1][i]; |
| s->coefs[0][i] = a + b; |
| s->coefs[1][i] = a - b; |
| } |
| } |
| |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| if (s->channel_coded[ch]) |
| { |
| static fixed32 output[BLOCK_MAX_SIZE * 2]; |
| |
| int n4, index, n; |
| |
| n = s->block_len; |
| n4 = s->block_len >>1; |
| |
| ff_imdct_calc(&s->mdct_ctx[bsize], |
| output, |
| s->coefs[ch], |
| s->mdct_tmp); |
| |
| |
| /* add in the frame */ |
| index = (s->frame_len / 2) + s->block_pos - n4; |
| |
| wma_window(s, output, &s->frame_out[ch][index]); |
| |
| |
| |
| /* specific fast case for ms-stereo : add to second |
| channel if it is not coded */ |
| if (s->ms_stereo && !s->channel_coded[1]) |
| { |
| wma_window(s, output, &s->frame_out[1][index]); |
| } |
| } |
| } |
| next: |
| /* update block number */ |
| ++s->block_num; |
| s->block_pos += s->block_len; |
| if (s->block_pos >= s->frame_len) |
| { |
| return 1; |
| } |
| else |
| { |
| return 0; |
| } |
| } |
| |
| /* decode a frame of frame_len samples */ |
| static int wma_decode_frame(WMADecodeContext *s, int16_t *samples) |
| { |
| int ret, i, n, a, ch, incr; |
| int16_t *ptr; |
| fixed32 *iptr; |
| // rb->splash(HZ, "in wma_decode_frame"); |
| |
| /* read each block */ |
| s->block_num = 0; |
| s->block_pos = 0; |
| |
| |
| for(;;) |
| { |
| ret = wma_decode_block(s); |
| if (ret < 0) |
| { |
| LOGF("wma_decode_block: %d",ret); |
| //rb->splash(HZ*4, "wma_decode_block failed with ret %d", ret); |
| return -1; |
| } |
| if (ret) |
| { |
| break; |
| } |
| } |
| |
| /* convert frame to integer */ |
| n = s->frame_len; |
| incr = s->nb_channels; |
| for(ch = 0; ch < s->nb_channels; ++ch) |
| { |
| ptr = samples + ch; |
| iptr = s->frame_out[ch]; |
| |
| for (i=0;i<n;++i) |
| { |
| a = fixtoi32(*iptr++)<<1; //ugly but good enough for now |
| |
| |
| |
| |
| |
| if (a > 32767) |
| { |
| a = 32767; |
| } |
| else if (a < -32768) |
| { |
| a = -32768; |
| } |
| *ptr = a; |
| ptr += incr; |
| } |
| /* prepare for next block */ |
| memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len], |
| s->frame_len * sizeof(fixed32)); |
| |
| } |
| |
| return 0; |
| } |
| |
| int wma_decode_superframe(WMADecodeContext* s, |
| void *data, /*output*/ |
| int *data_size, |
| uint8_t *buf, /*input*/ |
| int buf_size) |
| { |
| //WMADecodeContext *s = avctx->priv_data; |
| int nb_frames, bit_offset, i, pos, len; |
| uint8_t *q; |
| int16_t *samples; |
| |
| if (buf_size==0) |
| { |
| s->last_superframe_len = 0; |
| return 0; |
| } |
| |
| samples = data; |
| init_get_bits(&s->gb, buf, buf_size*8); |
| if (s->use_bit_reservoir) |
| { |
| /* read super frame header */ |
| get_bits(&s->gb, 4); /* super frame index */ |
| nb_frames = get_bits(&s->gb, 4) - 1; |
| |
| bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3); |
| if (s->last_superframe_len > 0) |
| { |
| /* add bit_offset bits to last frame */ |
| if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) > |
| MAX_CODED_SUPERFRAME_SIZE) |
| { |
| goto fail; |
| } |
| q = s->last_superframe + s->last_superframe_len; |
| len = bit_offset; |
| while (len > 0) |
| { |
| *q++ = (get_bits)(&s->gb, 8); |
| len -= 8; |
| } |
| if (len > 0) |
| { |
| *q++ = (get_bits)(&s->gb, len) << (8 - len); |
| } |
| |
| /* XXX: bit_offset bits into last frame */ |
| init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8); |
| /* skip unused bits */ |
| if (s->last_bitoffset > 0) |
| skip_bits(&s->gb, s->last_bitoffset); |
| /* this frame is stored in the last superframe and in the |
| current one */ |
| if (wma_decode_frame(s, samples) < 0) |
| { |
| goto fail; |
| } |
| samples += s->nb_channels * s->frame_len; |
| } |
| |
| /* read each frame starting from bit_offset */ |
| pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3; |
| init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8); |
| len = pos & 7; |
| if (len > 0) |
| skip_bits(&s->gb, len); |
| |
| s->reset_block_lengths = 1; |
| for(i=0;i<nb_frames;++i) |
| { |
| if (wma_decode_frame(s, samples) < 0) |
| { |
| goto fail; |
| } |
| samples += s->nb_channels * s->frame_len; |
| } |
| |
| /* we copy the end of the frame in the last frame buffer */ |
| pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7); |
| s->last_bitoffset = pos & 7; |
| pos >>= 3; |
| len = buf_size - pos; |
| if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) |
| { |
| goto fail; |
| } |
| s->last_superframe_len = len; |
| memcpy(s->last_superframe, buf + pos, len); |
| } |
| else |
| { |
| /* single frame decode */ |
| if (wma_decode_frame(s, samples) < 0) |
| { |
| goto fail; |
| } |
| samples += s->nb_channels * s->frame_len; |
| } |
| *data_size = (int8_t *)samples - (int8_t *)data; |
| return s->block_align; |
| fail: |
| /* when error, we reset the bit reservoir */ |
| s->last_superframe_len = 0; |
| return -1; |
| } |
| |
| /*void free_vlc(VLC *vlc) |
| { |
| //av_free(vlc->table); |
| } |
| */ |
| int wma_decode_end(WMADecodeContext *s) |
| { |
| (void)s; |
| /* WMADecodeContext *s = avctx->priv_data; |
| int i; |
| |
| for(i = 0; i < s->nb_block_sizes; ++i) |
| ff_mdct_end(&s->mdct_ctx[i]); |
| // for(i = 0; i < s->nb_block_sizes; ++i) //now statically allocated |
| // av_free(s->windows[i]); |
| |
| if (s->use_exp_vlc) |
| { |
| free_vlc(&s->exp_vlc); |
| } |
| if (s->use_noise_coding) |
| { |
| free_vlc(&s->hgain_vlc); |
| } |
| for(i = 0;i < 2; ++i) |
| { |
| // free_vlc(&s->coef_vlc[i]); |
| // av_free(s->run_table[i]); |
| // av_free(s->level_table[i]); |
| } |
| */ |
| return 0; |
| } |