Franklin Wei | a855d62 | 2017-01-21 15:18:31 -0500 | [diff] [blame] | 1 | /* |
| 2 | SDL - Simple DirectMedia Layer |
| 3 | Copyright (C) 1997-2012 Sam Lantinga |
| 4 | |
| 5 | This library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | This library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with this library; if not, write to the Free Software |
| 17 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | |
| 19 | Sam Lantinga |
| 20 | slouken@libsdl.org |
| 21 | */ |
| 22 | #include "SDL_config.h" |
| 23 | |
| 24 | /* This file contains portable memory management functions for SDL */ |
| 25 | |
| 26 | #include "SDL_stdinc.h" |
| 27 | |
| 28 | #ifndef HAVE_MALLOC |
| 29 | |
| 30 | #define LACKS_SYS_TYPES_H |
| 31 | #define LACKS_STDIO_H |
| 32 | #define LACKS_STRINGS_H |
| 33 | #define LACKS_STRING_H |
| 34 | #define LACKS_STDLIB_H |
| 35 | #define ABORT |
| 36 | |
| 37 | /* |
| 38 | This is a version (aka dlmalloc) of malloc/free/realloc written by |
| 39 | Doug Lea and released to the public domain, as explained at |
| 40 | http://creativecommons.org/licenses/publicdomain. Send questions, |
| 41 | comments, complaints, performance data, etc to dl@cs.oswego.edu |
| 42 | |
| 43 | * Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee) |
| 44 | |
| 45 | Note: There may be an updated version of this malloc obtainable at |
| 46 | ftp://gee.cs.oswego.edu/pub/misc/malloc.c |
| 47 | Check before installing! |
| 48 | |
| 49 | * Quickstart |
| 50 | |
| 51 | This library is all in one file to simplify the most common usage: |
| 52 | ftp it, compile it (-O3), and link it into another program. All of |
| 53 | the compile-time options default to reasonable values for use on |
| 54 | most platforms. You might later want to step through various |
| 55 | compile-time and dynamic tuning options. |
| 56 | |
| 57 | For convenience, an include file for code using this malloc is at: |
| 58 | ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h |
| 59 | You don't really need this .h file unless you call functions not |
| 60 | defined in your system include files. The .h file contains only the |
| 61 | excerpts from this file needed for using this malloc on ANSI C/C++ |
| 62 | systems, so long as you haven't changed compile-time options about |
| 63 | naming and tuning parameters. If you do, then you can create your |
| 64 | own malloc.h that does include all settings by cutting at the point |
| 65 | indicated below. Note that you may already by default be using a C |
| 66 | library containing a malloc that is based on some version of this |
| 67 | malloc (for example in linux). You might still want to use the one |
| 68 | in this file to customize settings or to avoid overheads associated |
| 69 | with library versions. |
| 70 | |
| 71 | * Vital statistics: |
| 72 | |
| 73 | Supported pointer/size_t representation: 4 or 8 bytes |
| 74 | size_t MUST be an unsigned type of the same width as |
| 75 | pointers. (If you are using an ancient system that declares |
| 76 | size_t as a signed type, or need it to be a different width |
| 77 | than pointers, you can use a previous release of this malloc |
| 78 | (e.g. 2.7.2) supporting these.) |
| 79 | |
| 80 | Alignment: 8 bytes (default) |
| 81 | This suffices for nearly all current machines and C compilers. |
| 82 | However, you can define MALLOC_ALIGNMENT to be wider than this |
| 83 | if necessary (up to 128bytes), at the expense of using more space. |
| 84 | |
| 85 | Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) |
| 86 | 8 or 16 bytes (if 8byte sizes) |
| 87 | Each malloced chunk has a hidden word of overhead holding size |
| 88 | and status information, and additional cross-check word |
| 89 | if FOOTERS is defined. |
| 90 | |
| 91 | Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) |
| 92 | 8-byte ptrs: 32 bytes (including overhead) |
| 93 | |
| 94 | Even a request for zero bytes (i.e., malloc(0)) returns a |
| 95 | pointer to something of the minimum allocatable size. |
| 96 | The maximum overhead wastage (i.e., number of extra bytes |
| 97 | allocated than were requested in malloc) is less than or equal |
| 98 | to the minimum size, except for requests >= mmap_threshold that |
| 99 | are serviced via mmap(), where the worst case wastage is about |
| 100 | 32 bytes plus the remainder from a system page (the minimal |
| 101 | mmap unit); typically 4096 or 8192 bytes. |
| 102 | |
| 103 | Security: static-safe; optionally more or less |
| 104 | The "security" of malloc refers to the ability of malicious |
| 105 | code to accentuate the effects of errors (for example, freeing |
| 106 | space that is not currently malloc'ed or overwriting past the |
| 107 | ends of chunks) in code that calls malloc. This malloc |
| 108 | guarantees not to modify any memory locations below the base of |
| 109 | heap, i.e., static variables, even in the presence of usage |
| 110 | errors. The routines additionally detect most improper frees |
| 111 | and reallocs. All this holds as long as the static bookkeeping |
| 112 | for malloc itself is not corrupted by some other means. This |
| 113 | is only one aspect of security -- these checks do not, and |
| 114 | cannot, detect all possible programming errors. |
| 115 | |
| 116 | If FOOTERS is defined nonzero, then each allocated chunk |
| 117 | carries an additional check word to verify that it was malloced |
| 118 | from its space. These check words are the same within each |
| 119 | execution of a program using malloc, but differ across |
| 120 | executions, so externally crafted fake chunks cannot be |
| 121 | freed. This improves security by rejecting frees/reallocs that |
| 122 | could corrupt heap memory, in addition to the checks preventing |
| 123 | writes to statics that are always on. This may further improve |
| 124 | security at the expense of time and space overhead. (Note that |
| 125 | FOOTERS may also be worth using with MSPACES.) |
| 126 | |
| 127 | By default detected errors cause the program to abort (calling |
| 128 | "abort()"). You can override this to instead proceed past |
| 129 | errors by defining PROCEED_ON_ERROR. In this case, a bad free |
| 130 | has no effect, and a malloc that encounters a bad address |
| 131 | caused by user overwrites will ignore the bad address by |
| 132 | dropping pointers and indices to all known memory. This may |
| 133 | be appropriate for programs that should continue if at all |
| 134 | possible in the face of programming errors, although they may |
| 135 | run out of memory because dropped memory is never reclaimed. |
| 136 | |
| 137 | If you don't like either of these options, you can define |
| 138 | CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything |
| 139 | else. And if if you are sure that your program using malloc has |
| 140 | no errors or vulnerabilities, you can define INSECURE to 1, |
| 141 | which might (or might not) provide a small performance improvement. |
| 142 | |
| 143 | Thread-safety: NOT thread-safe unless USE_LOCKS defined |
| 144 | When USE_LOCKS is defined, each public call to malloc, free, |
| 145 | etc is surrounded with either a pthread mutex or a win32 |
| 146 | spinlock (depending on WIN32). This is not especially fast, and |
| 147 | can be a major bottleneck. It is designed only to provide |
| 148 | minimal protection in concurrent environments, and to provide a |
| 149 | basis for extensions. If you are using malloc in a concurrent |
| 150 | program, consider instead using ptmalloc, which is derived from |
| 151 | a version of this malloc. (See http://www.malloc.de). |
| 152 | |
| 153 | System requirements: Any combination of MORECORE and/or MMAP/MUNMAP |
| 154 | This malloc can use unix sbrk or any emulation (invoked using |
| 155 | the CALL_MORECORE macro) and/or mmap/munmap or any emulation |
| 156 | (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system |
| 157 | memory. On most unix systems, it tends to work best if both |
| 158 | MORECORE and MMAP are enabled. On Win32, it uses emulations |
| 159 | based on VirtualAlloc. It also uses common C library functions |
| 160 | like memset. |
| 161 | |
| 162 | Compliance: I believe it is compliant with the Single Unix Specification |
| 163 | (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably |
| 164 | others as well. |
| 165 | |
| 166 | * Overview of algorithms |
| 167 | |
| 168 | This is not the fastest, most space-conserving, most portable, or |
| 169 | most tunable malloc ever written. However it is among the fastest |
| 170 | while also being among the most space-conserving, portable and |
| 171 | tunable. Consistent balance across these factors results in a good |
| 172 | general-purpose allocator for malloc-intensive programs. |
| 173 | |
| 174 | In most ways, this malloc is a best-fit allocator. Generally, it |
| 175 | chooses the best-fitting existing chunk for a request, with ties |
| 176 | broken in approximately least-recently-used order. (This strategy |
| 177 | normally maintains low fragmentation.) However, for requests less |
| 178 | than 256bytes, it deviates from best-fit when there is not an |
| 179 | exactly fitting available chunk by preferring to use space adjacent |
| 180 | to that used for the previous small request, as well as by breaking |
| 181 | ties in approximately most-recently-used order. (These enhance |
| 182 | locality of series of small allocations.) And for very large requests |
| 183 | (>= 256Kb by default), it relies on system memory mapping |
| 184 | facilities, if supported. (This helps avoid carrying around and |
| 185 | possibly fragmenting memory used only for large chunks.) |
| 186 | |
| 187 | All operations (except malloc_stats and mallinfo) have execution |
| 188 | times that are bounded by a constant factor of the number of bits in |
| 189 | a size_t, not counting any clearing in calloc or copying in realloc, |
| 190 | or actions surrounding MORECORE and MMAP that have times |
| 191 | proportional to the number of non-contiguous regions returned by |
| 192 | system allocation routines, which is often just 1. |
| 193 | |
| 194 | The implementation is not very modular and seriously overuses |
| 195 | macros. Perhaps someday all C compilers will do as good a job |
| 196 | inlining modular code as can now be done by brute-force expansion, |
| 197 | but now, enough of them seem not to. |
| 198 | |
| 199 | Some compilers issue a lot of warnings about code that is |
| 200 | dead/unreachable only on some platforms, and also about intentional |
| 201 | uses of negation on unsigned types. All known cases of each can be |
| 202 | ignored. |
| 203 | |
| 204 | For a longer but out of date high-level description, see |
| 205 | http://gee.cs.oswego.edu/dl/html/malloc.html |
| 206 | |
| 207 | * MSPACES |
| 208 | If MSPACES is defined, then in addition to malloc, free, etc., |
| 209 | this file also defines mspace_malloc, mspace_free, etc. These |
| 210 | are versions of malloc routines that take an "mspace" argument |
| 211 | obtained using create_mspace, to control all internal bookkeeping. |
| 212 | If ONLY_MSPACES is defined, only these versions are compiled. |
| 213 | So if you would like to use this allocator for only some allocations, |
| 214 | and your system malloc for others, you can compile with |
| 215 | ONLY_MSPACES and then do something like... |
| 216 | static mspace mymspace = create_mspace(0,0); // for example |
| 217 | #define mymalloc(bytes) mspace_malloc(mymspace, bytes) |
| 218 | |
| 219 | (Note: If you only need one instance of an mspace, you can instead |
| 220 | use "USE_DL_PREFIX" to relabel the global malloc.) |
| 221 | |
| 222 | You can similarly create thread-local allocators by storing |
| 223 | mspaces as thread-locals. For example: |
| 224 | static __thread mspace tlms = 0; |
| 225 | void* tlmalloc(size_t bytes) { |
| 226 | if (tlms == 0) tlms = create_mspace(0, 0); |
| 227 | return mspace_malloc(tlms, bytes); |
| 228 | } |
| 229 | void tlfree(void* mem) { mspace_free(tlms, mem); } |
| 230 | |
| 231 | Unless FOOTERS is defined, each mspace is completely independent. |
| 232 | You cannot allocate from one and free to another (although |
| 233 | conformance is only weakly checked, so usage errors are not always |
| 234 | caught). If FOOTERS is defined, then each chunk carries around a tag |
| 235 | indicating its originating mspace, and frees are directed to their |
| 236 | originating spaces. |
| 237 | |
| 238 | ------------------------- Compile-time options --------------------------- |
| 239 | |
| 240 | Be careful in setting #define values for numerical constants of type |
| 241 | size_t. On some systems, literal values are not automatically extended |
| 242 | to size_t precision unless they are explicitly casted. |
| 243 | |
Franklin Wei | a855d62 | 2017-01-21 15:18:31 -0500 | [diff] [blame] | 244 | MALLOC_ALIGNMENT default: (size_t)8 |
| 245 | Controls the minimum alignment for malloc'ed chunks. It must be a |
| 246 | power of two and at least 8, even on machines for which smaller |
| 247 | alignments would suffice. It may be defined as larger than this |
| 248 | though. Note however that code and data structures are optimized for |
| 249 | the case of 8-byte alignment. |
| 250 | |
| 251 | MSPACES default: 0 (false) |
| 252 | If true, compile in support for independent allocation spaces. |
| 253 | This is only supported if HAVE_MMAP is true. |
| 254 | |
| 255 | ONLY_MSPACES default: 0 (false) |
| 256 | If true, only compile in mspace versions, not regular versions. |
| 257 | |
| 258 | USE_LOCKS default: 0 (false) |
| 259 | Causes each call to each public routine to be surrounded with |
| 260 | pthread or WIN32 mutex lock/unlock. (If set true, this can be |
| 261 | overridden on a per-mspace basis for mspace versions.) |
| 262 | |
| 263 | FOOTERS default: 0 |
| 264 | If true, provide extra checking and dispatching by placing |
| 265 | information in the footers of allocated chunks. This adds |
| 266 | space and time overhead. |
| 267 | |
| 268 | INSECURE default: 0 |
| 269 | If true, omit checks for usage errors and heap space overwrites. |
| 270 | |
| 271 | USE_DL_PREFIX default: NOT defined |
| 272 | Causes compiler to prefix all public routines with the string 'dl'. |
| 273 | This can be useful when you only want to use this malloc in one part |
| 274 | of a program, using your regular system malloc elsewhere. |
| 275 | |
| 276 | ABORT default: defined as abort() |
| 277 | Defines how to abort on failed checks. On most systems, a failed |
| 278 | check cannot die with an "assert" or even print an informative |
| 279 | message, because the underlying print routines in turn call malloc, |
| 280 | which will fail again. Generally, the best policy is to simply call |
| 281 | abort(). It's not very useful to do more than this because many |
| 282 | errors due to overwriting will show up as address faults (null, odd |
| 283 | addresses etc) rather than malloc-triggered checks, so will also |
| 284 | abort. Also, most compilers know that abort() does not return, so |
| 285 | can better optimize code conditionally calling it. |
| 286 | |
| 287 | PROCEED_ON_ERROR default: defined as 0 (false) |
| 288 | Controls whether detected bad addresses cause them to bypassed |
| 289 | rather than aborting. If set, detected bad arguments to free and |
| 290 | realloc are ignored. And all bookkeeping information is zeroed out |
| 291 | upon a detected overwrite of freed heap space, thus losing the |
| 292 | ability to ever return it from malloc again, but enabling the |
| 293 | application to proceed. If PROCEED_ON_ERROR is defined, the |
| 294 | static variable malloc_corruption_error_count is compiled in |
| 295 | and can be examined to see if errors have occurred. This option |
| 296 | generates slower code than the default abort policy. |
| 297 | |
| 298 | DEBUG default: NOT defined |
| 299 | The DEBUG setting is mainly intended for people trying to modify |
| 300 | this code or diagnose problems when porting to new platforms. |
| 301 | However, it may also be able to better isolate user errors than just |
| 302 | using runtime checks. The assertions in the check routines spell |
| 303 | out in more detail the assumptions and invariants underlying the |
| 304 | algorithms. The checking is fairly extensive, and will slow down |
| 305 | execution noticeably. Calling malloc_stats or mallinfo with DEBUG |
| 306 | set will attempt to check every non-mmapped allocated and free chunk |
| 307 | in the course of computing the summaries. |
| 308 | |
| 309 | ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) |
| 310 | Debugging assertion failures can be nearly impossible if your |
| 311 | version of the assert macro causes malloc to be called, which will |
| 312 | lead to a cascade of further failures, blowing the runtime stack. |
| 313 | ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), |
| 314 | which will usually make debugging easier. |
| 315 | |
| 316 | MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 |
| 317 | The action to take before "return 0" when malloc fails to be able to |
| 318 | return memory because there is none available. |
| 319 | |
| 320 | HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES |
| 321 | True if this system supports sbrk or an emulation of it. |
| 322 | |
| 323 | MORECORE default: sbrk |
| 324 | The name of the sbrk-style system routine to call to obtain more |
| 325 | memory. See below for guidance on writing custom MORECORE |
| 326 | functions. The type of the argument to sbrk/MORECORE varies across |
| 327 | systems. It cannot be size_t, because it supports negative |
| 328 | arguments, so it is normally the signed type of the same width as |
| 329 | size_t (sometimes declared as "intptr_t"). It doesn't much matter |
| 330 | though. Internally, we only call it with arguments less than half |
| 331 | the max value of a size_t, which should work across all reasonable |
| 332 | possibilities, although sometimes generating compiler warnings. See |
| 333 | near the end of this file for guidelines for creating a custom |
| 334 | version of MORECORE. |
| 335 | |
| 336 | MORECORE_CONTIGUOUS default: 1 (true) |
| 337 | If true, take advantage of fact that consecutive calls to MORECORE |
| 338 | with positive arguments always return contiguous increasing |
| 339 | addresses. This is true of unix sbrk. It does not hurt too much to |
| 340 | set it true anyway, since malloc copes with non-contiguities. |
| 341 | Setting it false when definitely non-contiguous saves time |
| 342 | and possibly wasted space it would take to discover this though. |
| 343 | |
| 344 | MORECORE_CANNOT_TRIM default: NOT defined |
| 345 | True if MORECORE cannot release space back to the system when given |
| 346 | negative arguments. This is generally necessary only if you are |
| 347 | using a hand-crafted MORECORE function that cannot handle negative |
| 348 | arguments. |
| 349 | |
| 350 | HAVE_MMAP default: 1 (true) |
| 351 | True if this system supports mmap or an emulation of it. If so, and |
| 352 | HAVE_MORECORE is not true, MMAP is used for all system |
| 353 | allocation. If set and HAVE_MORECORE is true as well, MMAP is |
| 354 | primarily used to directly allocate very large blocks. It is also |
| 355 | used as a backup strategy in cases where MORECORE fails to provide |
| 356 | space from system. Note: A single call to MUNMAP is assumed to be |
| 357 | able to unmap memory that may have be allocated using multiple calls |
| 358 | to MMAP, so long as they are adjacent. |
| 359 | |
| 360 | HAVE_MREMAP default: 1 on linux, else 0 |
| 361 | If true realloc() uses mremap() to re-allocate large blocks and |
| 362 | extend or shrink allocation spaces. |
| 363 | |
| 364 | MMAP_CLEARS default: 1 on unix |
| 365 | True if mmap clears memory so calloc doesn't need to. This is true |
| 366 | for standard unix mmap using /dev/zero. |
| 367 | |
| 368 | USE_BUILTIN_FFS default: 0 (i.e., not used) |
| 369 | Causes malloc to use the builtin ffs() function to compute indices. |
| 370 | Some compilers may recognize and intrinsify ffs to be faster than the |
| 371 | supplied C version. Also, the case of x86 using gcc is special-cased |
| 372 | to an asm instruction, so is already as fast as it can be, and so |
| 373 | this setting has no effect. (On most x86s, the asm version is only |
| 374 | slightly faster than the C version.) |
| 375 | |
| 376 | malloc_getpagesize default: derive from system includes, or 4096. |
| 377 | The system page size. To the extent possible, this malloc manages |
| 378 | memory from the system in page-size units. This may be (and |
| 379 | usually is) a function rather than a constant. This is ignored |
| 380 | if WIN32, where page size is determined using getSystemInfo during |
| 381 | initialization. |
| 382 | |
| 383 | USE_DEV_RANDOM default: 0 (i.e., not used) |
| 384 | Causes malloc to use /dev/random to initialize secure magic seed for |
| 385 | stamping footers. Otherwise, the current time is used. |
| 386 | |
| 387 | NO_MALLINFO default: 0 |
| 388 | If defined, don't compile "mallinfo". This can be a simple way |
| 389 | of dealing with mismatches between system declarations and |
| 390 | those in this file. |
| 391 | |
| 392 | MALLINFO_FIELD_TYPE default: size_t |
| 393 | The type of the fields in the mallinfo struct. This was originally |
| 394 | defined as "int" in SVID etc, but is more usefully defined as |
| 395 | size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set |
| 396 | |
| 397 | REALLOC_ZERO_BYTES_FREES default: not defined |
| 398 | This should be set if a call to realloc with zero bytes should |
| 399 | be the same as a call to free. Some people think it should. Otherwise, |
| 400 | since this malloc returns a unique pointer for malloc(0), so does |
| 401 | realloc(p, 0). |
| 402 | |
| 403 | LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H |
| 404 | LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H |
| 405 | LACKS_STDLIB_H default: NOT defined unless on WIN32 |
| 406 | Define these if your system does not have these header files. |
| 407 | You might need to manually insert some of the declarations they provide. |
| 408 | |
| 409 | DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, |
| 410 | system_info.dwAllocationGranularity in WIN32, |
| 411 | otherwise 64K. |
| 412 | Also settable using mallopt(M_GRANULARITY, x) |
| 413 | The unit for allocating and deallocating memory from the system. On |
| 414 | most systems with contiguous MORECORE, there is no reason to |
| 415 | make this more than a page. However, systems with MMAP tend to |
| 416 | either require or encourage larger granularities. You can increase |
| 417 | this value to prevent system allocation functions to be called so |
| 418 | often, especially if they are slow. The value must be at least one |
| 419 | page and must be a power of two. Setting to 0 causes initialization |
| 420 | to either page size or win32 region size. (Note: In previous |
| 421 | versions of malloc, the equivalent of this option was called |
| 422 | "TOP_PAD") |
| 423 | |
| 424 | DEFAULT_TRIM_THRESHOLD default: 2MB |
| 425 | Also settable using mallopt(M_TRIM_THRESHOLD, x) |
| 426 | The maximum amount of unused top-most memory to keep before |
| 427 | releasing via malloc_trim in free(). Automatic trimming is mainly |
| 428 | useful in long-lived programs using contiguous MORECORE. Because |
| 429 | trimming via sbrk can be slow on some systems, and can sometimes be |
| 430 | wasteful (in cases where programs immediately afterward allocate |
| 431 | more large chunks) the value should be high enough so that your |
| 432 | overall system performance would improve by releasing this much |
| 433 | memory. As a rough guide, you might set to a value close to the |
| 434 | average size of a process (program) running on your system. |
| 435 | Releasing this much memory would allow such a process to run in |
| 436 | memory. Generally, it is worth tuning trim thresholds when a |
| 437 | program undergoes phases where several large chunks are allocated |
| 438 | and released in ways that can reuse each other's storage, perhaps |
| 439 | mixed with phases where there are no such chunks at all. The trim |
| 440 | value must be greater than page size to have any useful effect. To |
| 441 | disable trimming completely, you can set to MAX_SIZE_T. Note that the trick |
| 442 | some people use of mallocing a huge space and then freeing it at |
| 443 | program startup, in an attempt to reserve system memory, doesn't |
| 444 | have the intended effect under automatic trimming, since that memory |
| 445 | will immediately be returned to the system. |
| 446 | |
| 447 | DEFAULT_MMAP_THRESHOLD default: 256K |
| 448 | Also settable using mallopt(M_MMAP_THRESHOLD, x) |
| 449 | The request size threshold for using MMAP to directly service a |
| 450 | request. Requests of at least this size that cannot be allocated |
| 451 | using already-existing space will be serviced via mmap. (If enough |
| 452 | normal freed space already exists it is used instead.) Using mmap |
| 453 | segregates relatively large chunks of memory so that they can be |
| 454 | individually obtained and released from the host system. A request |
| 455 | serviced through mmap is never reused by any other request (at least |
| 456 | not directly; the system may just so happen to remap successive |
| 457 | requests to the same locations). Segregating space in this way has |
| 458 | the benefits that: Mmapped space can always be individually released |
| 459 | back to the system, which helps keep the system level memory demands |
| 460 | of a long-lived program low. Also, mapped memory doesn't become |
| 461 | `locked' between other chunks, as can happen with normally allocated |
| 462 | chunks, which means that even trimming via malloc_trim would not |
| 463 | release them. However, it has the disadvantage that the space |
| 464 | cannot be reclaimed, consolidated, and then used to service later |
| 465 | requests, as happens with normal chunks. The advantages of mmap |
| 466 | nearly always outweigh disadvantages for "large" chunks, but the |
| 467 | value of "large" may vary across systems. The default is an |
| 468 | empirically derived value that works well in most systems. You can |
| 469 | disable mmap by setting to MAX_SIZE_T. |
| 470 | |
| 471 | */ |
| 472 | |
Franklin Wei | a855d62 | 2017-01-21 15:18:31 -0500 | [diff] [blame] | 473 | #if defined(DARWIN) || defined(_DARWIN) |
| 474 | /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ |
| 475 | #ifndef HAVE_MORECORE |
| 476 | #define HAVE_MORECORE 0 |
| 477 | #define HAVE_MMAP 1 |
| 478 | #endif /* HAVE_MORECORE */ |
| 479 | #endif /* DARWIN */ |
| 480 | |
| 481 | #ifndef LACKS_SYS_TYPES_H |
| 482 | #include <sys/types.h> /* For size_t */ |
| 483 | #endif /* LACKS_SYS_TYPES_H */ |
| 484 | |
| 485 | /* The maximum possible size_t value has all bits set */ |
| 486 | #define MAX_SIZE_T (~(size_t)0) |
| 487 | |
| 488 | #ifndef ONLY_MSPACES |
| 489 | #define ONLY_MSPACES 0 |
| 490 | #endif /* ONLY_MSPACES */ |
| 491 | #ifndef MSPACES |
| 492 | #if ONLY_MSPACES |
| 493 | #define MSPACES 1 |
| 494 | #else /* ONLY_MSPACES */ |
| 495 | #define MSPACES 0 |
| 496 | #endif /* ONLY_MSPACES */ |
| 497 | #endif /* MSPACES */ |
| 498 | #ifndef MALLOC_ALIGNMENT |
| 499 | #define MALLOC_ALIGNMENT ((size_t)8U) |
| 500 | #endif /* MALLOC_ALIGNMENT */ |
| 501 | #ifndef FOOTERS |
| 502 | #define FOOTERS 0 |
| 503 | #endif /* FOOTERS */ |
| 504 | #ifndef ABORT |
| 505 | #define ABORT abort() |
| 506 | #endif /* ABORT */ |
| 507 | #ifndef ABORT_ON_ASSERT_FAILURE |
| 508 | #define ABORT_ON_ASSERT_FAILURE 1 |
| 509 | #endif /* ABORT_ON_ASSERT_FAILURE */ |
| 510 | #ifndef PROCEED_ON_ERROR |
| 511 | #define PROCEED_ON_ERROR 0 |
| 512 | #endif /* PROCEED_ON_ERROR */ |
| 513 | #ifndef USE_LOCKS |
| 514 | #define USE_LOCKS 0 |
| 515 | #endif /* USE_LOCKS */ |
| 516 | #ifndef INSECURE |
| 517 | #define INSECURE 0 |
| 518 | #endif /* INSECURE */ |
| 519 | #ifndef HAVE_MMAP |
| 520 | #define HAVE_MMAP 1 |
| 521 | #endif /* HAVE_MMAP */ |
| 522 | #ifndef MMAP_CLEARS |
| 523 | #define MMAP_CLEARS 1 |
| 524 | #endif /* MMAP_CLEARS */ |
| 525 | #ifndef HAVE_MREMAP |
| 526 | #ifdef linux |
| 527 | #define HAVE_MREMAP 1 |
| 528 | #else /* linux */ |
| 529 | #define HAVE_MREMAP 0 |
| 530 | #endif /* linux */ |
| 531 | #endif /* HAVE_MREMAP */ |
| 532 | #ifndef MALLOC_FAILURE_ACTION |
| 533 | #define MALLOC_FAILURE_ACTION errno = ENOMEM; |
| 534 | #endif /* MALLOC_FAILURE_ACTION */ |
| 535 | #ifndef HAVE_MORECORE |
| 536 | #if ONLY_MSPACES |
| 537 | #define HAVE_MORECORE 0 |
| 538 | #else /* ONLY_MSPACES */ |
| 539 | #define HAVE_MORECORE 1 |
| 540 | #endif /* ONLY_MSPACES */ |
| 541 | #endif /* HAVE_MORECORE */ |
| 542 | #if !HAVE_MORECORE |
| 543 | #define MORECORE_CONTIGUOUS 0 |
| 544 | #else /* !HAVE_MORECORE */ |
| 545 | #ifndef MORECORE |
| 546 | #define MORECORE sbrk |
| 547 | #endif /* MORECORE */ |
| 548 | #ifndef MORECORE_CONTIGUOUS |
| 549 | #define MORECORE_CONTIGUOUS 1 |
| 550 | #endif /* MORECORE_CONTIGUOUS */ |
| 551 | #endif /* HAVE_MORECORE */ |
| 552 | #ifndef DEFAULT_GRANULARITY |
| 553 | #if MORECORE_CONTIGUOUS |
| 554 | #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ |
| 555 | #else /* MORECORE_CONTIGUOUS */ |
| 556 | #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) |
| 557 | #endif /* MORECORE_CONTIGUOUS */ |
| 558 | #endif /* DEFAULT_GRANULARITY */ |
| 559 | #ifndef DEFAULT_TRIM_THRESHOLD |
| 560 | #ifndef MORECORE_CANNOT_TRIM |
| 561 | #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) |
| 562 | #else /* MORECORE_CANNOT_TRIM */ |
| 563 | #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T |
| 564 | #endif /* MORECORE_CANNOT_TRIM */ |
| 565 | #endif /* DEFAULT_TRIM_THRESHOLD */ |
| 566 | #ifndef DEFAULT_MMAP_THRESHOLD |
| 567 | #if HAVE_MMAP |
| 568 | #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) |
| 569 | #else /* HAVE_MMAP */ |
| 570 | #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T |
| 571 | #endif /* HAVE_MMAP */ |
| 572 | #endif /* DEFAULT_MMAP_THRESHOLD */ |
| 573 | #ifndef USE_BUILTIN_FFS |
| 574 | #define USE_BUILTIN_FFS 0 |
| 575 | #endif /* USE_BUILTIN_FFS */ |
| 576 | #ifndef USE_DEV_RANDOM |
| 577 | #define USE_DEV_RANDOM 0 |
| 578 | #endif /* USE_DEV_RANDOM */ |
| 579 | #ifndef NO_MALLINFO |
| 580 | #define NO_MALLINFO 0 |
| 581 | #endif /* NO_MALLINFO */ |
| 582 | #ifndef MALLINFO_FIELD_TYPE |
| 583 | #define MALLINFO_FIELD_TYPE size_t |
| 584 | #endif /* MALLINFO_FIELD_TYPE */ |
| 585 | |
| 586 | #define memset SDL_memset |
| 587 | #define memcpy SDL_memcpy |
| 588 | #define malloc SDL_malloc |
| 589 | #define calloc SDL_calloc |
| 590 | #define realloc SDL_realloc |
| 591 | #define free SDL_free |
| 592 | |
| 593 | /* |
| 594 | mallopt tuning options. SVID/XPG defines four standard parameter |
| 595 | numbers for mallopt, normally defined in malloc.h. None of these |
| 596 | are used in this malloc, so setting them has no effect. But this |
| 597 | malloc does support the following options. |
| 598 | */ |
| 599 | |
| 600 | #define M_TRIM_THRESHOLD (-1) |
| 601 | #define M_GRANULARITY (-2) |
| 602 | #define M_MMAP_THRESHOLD (-3) |
| 603 | |
| 604 | /* ------------------------ Mallinfo declarations ------------------------ */ |
| 605 | |
| 606 | #if !NO_MALLINFO |
| 607 | /* |
| 608 | This version of malloc supports the standard SVID/XPG mallinfo |
| 609 | routine that returns a struct containing usage properties and |
| 610 | statistics. It should work on any system that has a |
| 611 | /usr/include/malloc.h defining struct mallinfo. The main |
| 612 | declaration needed is the mallinfo struct that is returned (by-copy) |
| 613 | by mallinfo(). The malloinfo struct contains a bunch of fields that |
| 614 | are not even meaningful in this version of malloc. These fields are |
| 615 | are instead filled by mallinfo() with other numbers that might be of |
| 616 | interest. |
| 617 | |
| 618 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a |
| 619 | /usr/include/malloc.h file that includes a declaration of struct |
| 620 | mallinfo. If so, it is included; else a compliant version is |
| 621 | declared below. These must be precisely the same for mallinfo() to |
| 622 | work. The original SVID version of this struct, defined on most |
| 623 | systems with mallinfo, declares all fields as ints. But some others |
| 624 | define as unsigned long. If your system defines the fields using a |
| 625 | type of different width than listed here, you MUST #include your |
| 626 | system version and #define HAVE_USR_INCLUDE_MALLOC_H. |
| 627 | */ |
| 628 | |
| 629 | /* #define HAVE_USR_INCLUDE_MALLOC_H */ |
| 630 | |
| 631 | #ifdef HAVE_USR_INCLUDE_MALLOC_H |
| 632 | #include "/usr/include/malloc.h" |
| 633 | #else /* HAVE_USR_INCLUDE_MALLOC_H */ |
| 634 | |
| 635 | struct mallinfo { |
| 636 | MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ |
| 637 | MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ |
| 638 | MALLINFO_FIELD_TYPE smblks; /* always 0 */ |
| 639 | MALLINFO_FIELD_TYPE hblks; /* always 0 */ |
| 640 | MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ |
| 641 | MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ |
| 642 | MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ |
| 643 | MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ |
| 644 | MALLINFO_FIELD_TYPE fordblks; /* total free space */ |
| 645 | MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ |
| 646 | }; |
| 647 | |
| 648 | #endif /* HAVE_USR_INCLUDE_MALLOC_H */ |
| 649 | #endif /* NO_MALLINFO */ |
| 650 | |
| 651 | #ifdef __cplusplus |
| 652 | extern "C" { |
| 653 | #endif /* __cplusplus */ |
| 654 | |
| 655 | #if !ONLY_MSPACES |
| 656 | |
| 657 | /* ------------------- Declarations of public routines ------------------- */ |
| 658 | |
| 659 | #ifndef USE_DL_PREFIX |
| 660 | #define dlcalloc calloc |
| 661 | #define dlfree free |
| 662 | #define dlmalloc malloc |
| 663 | #define dlmemalign memalign |
| 664 | #define dlrealloc realloc |
| 665 | #define dlvalloc valloc |
| 666 | #define dlpvalloc pvalloc |
| 667 | #define dlmallinfo mallinfo |
| 668 | #define dlmallopt mallopt |
| 669 | #define dlmalloc_trim malloc_trim |
| 670 | #define dlmalloc_stats malloc_stats |
| 671 | #define dlmalloc_usable_size malloc_usable_size |
| 672 | #define dlmalloc_footprint malloc_footprint |
| 673 | #define dlmalloc_max_footprint malloc_max_footprint |
| 674 | #define dlindependent_calloc independent_calloc |
| 675 | #define dlindependent_comalloc independent_comalloc |
| 676 | #endif /* USE_DL_PREFIX */ |
| 677 | |
| 678 | |
| 679 | /* |
| 680 | malloc(size_t n) |
| 681 | Returns a pointer to a newly allocated chunk of at least n bytes, or |
| 682 | null if no space is available, in which case errno is set to ENOMEM |
| 683 | on ANSI C systems. |
| 684 | |
| 685 | If n is zero, malloc returns a minimum-sized chunk. (The minimum |
| 686 | size is 16 bytes on most 32bit systems, and 32 bytes on 64bit |
| 687 | systems.) Note that size_t is an unsigned type, so calls with |
| 688 | arguments that would be negative if signed are interpreted as |
| 689 | requests for huge amounts of space, which will often fail. The |
| 690 | maximum supported value of n differs across systems, but is in all |
| 691 | cases less than the maximum representable value of a size_t. |
| 692 | */ |
| 693 | void* dlmalloc(size_t); |
| 694 | |
| 695 | /* |
| 696 | free(void* p) |
| 697 | Releases the chunk of memory pointed to by p, that had been previously |
| 698 | allocated using malloc or a related routine such as realloc. |
| 699 | It has no effect if p is null. If p was not malloced or already |
| 700 | freed, free(p) will by default cause the current program to abort. |
| 701 | */ |
| 702 | void dlfree(void*); |
| 703 | |
| 704 | /* |
| 705 | calloc(size_t n_elements, size_t element_size); |
| 706 | Returns a pointer to n_elements * element_size bytes, with all locations |
| 707 | set to zero. |
| 708 | */ |
| 709 | void* dlcalloc(size_t, size_t); |
| 710 | |
| 711 | /* |
| 712 | realloc(void* p, size_t n) |
| 713 | Returns a pointer to a chunk of size n that contains the same data |
| 714 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
| 715 | if no space is available. |
| 716 | |
| 717 | The returned pointer may or may not be the same as p. The algorithm |
| 718 | prefers extending p in most cases when possible, otherwise it |
| 719 | employs the equivalent of a malloc-copy-free sequence. |
| 720 | |
| 721 | If p is null, realloc is equivalent to malloc. |
| 722 | |
| 723 | If space is not available, realloc returns null, errno is set (if on |
| 724 | ANSI) and p is NOT freed. |
| 725 | |
| 726 | if n is for fewer bytes than already held by p, the newly unused |
| 727 | space is lopped off and freed if possible. realloc with a size |
| 728 | argument of zero (re)allocates a minimum-sized chunk. |
| 729 | |
| 730 | The old unix realloc convention of allowing the last-free'd chunk |
| 731 | to be used as an argument to realloc is not supported. |
| 732 | */ |
| 733 | |
| 734 | void* dlrealloc(void*, size_t); |
| 735 | |
| 736 | /* |
| 737 | memalign(size_t alignment, size_t n); |
| 738 | Returns a pointer to a newly allocated chunk of n bytes, aligned |
| 739 | in accord with the alignment argument. |
| 740 | |
| 741 | The alignment argument should be a power of two. If the argument is |
| 742 | not a power of two, the nearest greater power is used. |
| 743 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
| 744 | bother calling memalign with an argument of 8 or less. |
| 745 | |
| 746 | Overreliance on memalign is a sure way to fragment space. |
| 747 | */ |
| 748 | void* dlmemalign(size_t, size_t); |
| 749 | |
| 750 | /* |
| 751 | valloc(size_t n); |
| 752 | Equivalent to memalign(pagesize, n), where pagesize is the page |
| 753 | size of the system. If the pagesize is unknown, 4096 is used. |
| 754 | */ |
| 755 | void* dlvalloc(size_t); |
| 756 | |
| 757 | /* |
| 758 | mallopt(int parameter_number, int parameter_value) |
| 759 | Sets tunable parameters The format is to provide a |
| 760 | (parameter-number, parameter-value) pair. mallopt then sets the |
| 761 | corresponding parameter to the argument value if it can (i.e., so |
| 762 | long as the value is meaningful), and returns 1 if successful else |
| 763 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, |
| 764 | normally defined in malloc.h. None of these are use in this malloc, |
| 765 | so setting them has no effect. But this malloc also supports other |
| 766 | options in mallopt. See below for details. Briefly, supported |
| 767 | parameters are as follows (listed defaults are for "typical" |
| 768 | configurations). |
| 769 | |
| 770 | Symbol param # default allowed param values |
| 771 | M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) |
| 772 | M_GRANULARITY -2 page size any power of 2 >= page size |
| 773 | M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) |
| 774 | */ |
| 775 | int dlmallopt(int, int); |
| 776 | |
| 777 | /* |
| 778 | malloc_footprint(); |
| 779 | Returns the number of bytes obtained from the system. The total |
| 780 | number of bytes allocated by malloc, realloc etc., is less than this |
| 781 | value. Unlike mallinfo, this function returns only a precomputed |
| 782 | result, so can be called frequently to monitor memory consumption. |
| 783 | Even if locks are otherwise defined, this function does not use them, |
| 784 | so results might not be up to date. |
| 785 | */ |
| 786 | size_t dlmalloc_footprint(void); |
| 787 | |
| 788 | /* |
| 789 | malloc_max_footprint(); |
| 790 | Returns the maximum number of bytes obtained from the system. This |
| 791 | value will be greater than current footprint if deallocated space |
| 792 | has been reclaimed by the system. The peak number of bytes allocated |
| 793 | by malloc, realloc etc., is less than this value. Unlike mallinfo, |
| 794 | this function returns only a precomputed result, so can be called |
| 795 | frequently to monitor memory consumption. Even if locks are |
| 796 | otherwise defined, this function does not use them, so results might |
| 797 | not be up to date. |
| 798 | */ |
| 799 | size_t dlmalloc_max_footprint(void); |
| 800 | |
| 801 | #if !NO_MALLINFO |
| 802 | /* |
| 803 | mallinfo() |
| 804 | Returns (by copy) a struct containing various summary statistics: |
| 805 | |
| 806 | arena: current total non-mmapped bytes allocated from system |
| 807 | ordblks: the number of free chunks |
| 808 | smblks: always zero. |
| 809 | hblks: current number of mmapped regions |
| 810 | hblkhd: total bytes held in mmapped regions |
| 811 | usmblks: the maximum total allocated space. This will be greater |
| 812 | than current total if trimming has occurred. |
| 813 | fsmblks: always zero |
| 814 | uordblks: current total allocated space (normal or mmapped) |
| 815 | fordblks: total free space |
| 816 | keepcost: the maximum number of bytes that could ideally be released |
| 817 | back to system via malloc_trim. ("ideally" means that |
| 818 | it ignores page restrictions etc.) |
| 819 | |
| 820 | Because these fields are ints, but internal bookkeeping may |
| 821 | be kept as longs, the reported values may wrap around zero and |
| 822 | thus be inaccurate. |
| 823 | */ |
| 824 | struct mallinfo dlmallinfo(void); |
| 825 | #endif /* NO_MALLINFO */ |
| 826 | |
| 827 | /* |
| 828 | independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); |
| 829 | |
| 830 | independent_calloc is similar to calloc, but instead of returning a |
| 831 | single cleared space, it returns an array of pointers to n_elements |
| 832 | independent elements that can hold contents of size elem_size, each |
| 833 | of which starts out cleared, and can be independently freed, |
| 834 | realloc'ed etc. The elements are guaranteed to be adjacently |
| 835 | allocated (this is not guaranteed to occur with multiple callocs or |
| 836 | mallocs), which may also improve cache locality in some |
| 837 | applications. |
| 838 | |
| 839 | The "chunks" argument is optional (i.e., may be null, which is |
| 840 | probably the most typical usage). If it is null, the returned array |
| 841 | is itself dynamically allocated and should also be freed when it is |
| 842 | no longer needed. Otherwise, the chunks array must be of at least |
| 843 | n_elements in length. It is filled in with the pointers to the |
| 844 | chunks. |
| 845 | |
| 846 | In either case, independent_calloc returns this pointer array, or |
| 847 | null if the allocation failed. If n_elements is zero and "chunks" |
| 848 | is null, it returns a chunk representing an array with zero elements |
| 849 | (which should be freed if not wanted). |
| 850 | |
| 851 | Each element must be individually freed when it is no longer |
| 852 | needed. If you'd like to instead be able to free all at once, you |
| 853 | should instead use regular calloc and assign pointers into this |
| 854 | space to represent elements. (In this case though, you cannot |
| 855 | independently free elements.) |
| 856 | |
| 857 | independent_calloc simplifies and speeds up implementations of many |
| 858 | kinds of pools. It may also be useful when constructing large data |
| 859 | structures that initially have a fixed number of fixed-sized nodes, |
| 860 | but the number is not known at compile time, and some of the nodes |
| 861 | may later need to be freed. For example: |
| 862 | |
| 863 | struct Node { int item; struct Node* next; }; |
| 864 | |
| 865 | struct Node* build_list() { |
| 866 | struct Node** pool; |
| 867 | int n = read_number_of_nodes_needed(); |
| 868 | if (n <= 0) return 0; |
| 869 | pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); |
| 870 | if (pool == 0) die(); |
| 871 | // organize into a linked list... |
| 872 | struct Node* first = pool[0]; |
| 873 | for (i = 0; i < n-1; ++i) |
| 874 | pool[i]->next = pool[i+1]; |
| 875 | free(pool); // Can now free the array (or not, if it is needed later) |
| 876 | return first; |
| 877 | } |
| 878 | */ |
| 879 | void** dlindependent_calloc(size_t, size_t, void**); |
| 880 | |
| 881 | /* |
| 882 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
| 883 | |
| 884 | independent_comalloc allocates, all at once, a set of n_elements |
| 885 | chunks with sizes indicated in the "sizes" array. It returns |
| 886 | an array of pointers to these elements, each of which can be |
| 887 | independently freed, realloc'ed etc. The elements are guaranteed to |
| 888 | be adjacently allocated (this is not guaranteed to occur with |
| 889 | multiple callocs or mallocs), which may also improve cache locality |
| 890 | in some applications. |
| 891 | |
| 892 | The "chunks" argument is optional (i.e., may be null). If it is null |
| 893 | the returned array is itself dynamically allocated and should also |
| 894 | be freed when it is no longer needed. Otherwise, the chunks array |
| 895 | must be of at least n_elements in length. It is filled in with the |
| 896 | pointers to the chunks. |
| 897 | |
| 898 | In either case, independent_comalloc returns this pointer array, or |
| 899 | null if the allocation failed. If n_elements is zero and chunks is |
| 900 | null, it returns a chunk representing an array with zero elements |
| 901 | (which should be freed if not wanted). |
| 902 | |
| 903 | Each element must be individually freed when it is no longer |
| 904 | needed. If you'd like to instead be able to free all at once, you |
| 905 | should instead use a single regular malloc, and assign pointers at |
| 906 | particular offsets in the aggregate space. (In this case though, you |
| 907 | cannot independently free elements.) |
| 908 | |
| 909 | independent_comallac differs from independent_calloc in that each |
| 910 | element may have a different size, and also that it does not |
| 911 | automatically clear elements. |
| 912 | |
| 913 | independent_comalloc can be used to speed up allocation in cases |
| 914 | where several structs or objects must always be allocated at the |
| 915 | same time. For example: |
| 916 | |
| 917 | struct Head { ... } |
| 918 | struct Foot { ... } |
| 919 | |
| 920 | void send_message(char* msg) { |
| 921 | int msglen = strlen(msg); |
| 922 | size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; |
| 923 | void* chunks[3]; |
| 924 | if (independent_comalloc(3, sizes, chunks) == 0) |
| 925 | die(); |
| 926 | struct Head* head = (struct Head*)(chunks[0]); |
| 927 | char* body = (char*)(chunks[1]); |
| 928 | struct Foot* foot = (struct Foot*)(chunks[2]); |
| 929 | // ... |
| 930 | } |
| 931 | |
| 932 | In general though, independent_comalloc is worth using only for |
| 933 | larger values of n_elements. For small values, you probably won't |
| 934 | detect enough difference from series of malloc calls to bother. |
| 935 | |
| 936 | Overuse of independent_comalloc can increase overall memory usage, |
| 937 | since it cannot reuse existing noncontiguous small chunks that |
| 938 | might be available for some of the elements. |
| 939 | */ |
| 940 | void** dlindependent_comalloc(size_t, size_t*, void**); |
| 941 | |
| 942 | |
| 943 | /* |
| 944 | pvalloc(size_t n); |
| 945 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
| 946 | round up n to nearest pagesize. |
| 947 | */ |
| 948 | void* dlpvalloc(size_t); |
| 949 | |
| 950 | /* |
| 951 | malloc_trim(size_t pad); |
| 952 | |
| 953 | If possible, gives memory back to the system (via negative arguments |
| 954 | to sbrk) if there is unused memory at the `high' end of the malloc |
| 955 | pool or in unused MMAP segments. You can call this after freeing |
| 956 | large blocks of memory to potentially reduce the system-level memory |
| 957 | requirements of a program. However, it cannot guarantee to reduce |
| 958 | memory. Under some allocation patterns, some large free blocks of |
| 959 | memory will be locked between two used chunks, so they cannot be |
| 960 | given back to the system. |
| 961 | |
| 962 | The `pad' argument to malloc_trim represents the amount of free |
| 963 | trailing space to leave untrimmed. If this argument is zero, only |
| 964 | the minimum amount of memory to maintain internal data structures |
| 965 | will be left. Non-zero arguments can be supplied to maintain enough |
| 966 | trailing space to service future expected allocations without having |
| 967 | to re-obtain memory from the system. |
| 968 | |
| 969 | Malloc_trim returns 1 if it actually released any memory, else 0. |
| 970 | */ |
| 971 | int dlmalloc_trim(size_t); |
| 972 | |
| 973 | /* |
| 974 | malloc_usable_size(void* p); |
| 975 | |
| 976 | Returns the number of bytes you can actually use in |
| 977 | an allocated chunk, which may be more than you requested (although |
| 978 | often not) due to alignment and minimum size constraints. |
| 979 | You can use this many bytes without worrying about |
| 980 | overwriting other allocated objects. This is not a particularly great |
| 981 | programming practice. malloc_usable_size can be more useful in |
| 982 | debugging and assertions, for example: |
| 983 | |
| 984 | p = malloc(n); |
| 985 | assert(malloc_usable_size(p) >= 256); |
| 986 | */ |
| 987 | size_t dlmalloc_usable_size(void*); |
| 988 | |
| 989 | /* |
| 990 | malloc_stats(); |
| 991 | Prints on stderr the amount of space obtained from the system (both |
| 992 | via sbrk and mmap), the maximum amount (which may be more than |
| 993 | current if malloc_trim and/or munmap got called), and the current |
| 994 | number of bytes allocated via malloc (or realloc, etc) but not yet |
| 995 | freed. Note that this is the number of bytes allocated, not the |
| 996 | number requested. It will be larger than the number requested |
| 997 | because of alignment and bookkeeping overhead. Because it includes |
| 998 | alignment wastage as being in use, this figure may be greater than |
| 999 | zero even when no user-level chunks are allocated. |
| 1000 | |
| 1001 | The reported current and maximum system memory can be inaccurate if |
| 1002 | a program makes other calls to system memory allocation functions |
| 1003 | (normally sbrk) outside of malloc. |
| 1004 | |
| 1005 | malloc_stats prints only the most commonly interesting statistics. |
| 1006 | More information can be obtained by calling mallinfo. |
| 1007 | */ |
| 1008 | void dlmalloc_stats(void); |
| 1009 | |
| 1010 | #endif /* ONLY_MSPACES */ |
| 1011 | |
| 1012 | #if MSPACES |
| 1013 | |
| 1014 | /* |
| 1015 | mspace is an opaque type representing an independent |
| 1016 | region of space that supports mspace_malloc, etc. |
| 1017 | */ |
| 1018 | typedef void* mspace; |
| 1019 | |
| 1020 | /* |
| 1021 | create_mspace creates and returns a new independent space with the |
| 1022 | given initial capacity, or, if 0, the default granularity size. It |
| 1023 | returns null if there is no system memory available to create the |
| 1024 | space. If argument locked is non-zero, the space uses a separate |
| 1025 | lock to control access. The capacity of the space will grow |
| 1026 | dynamically as needed to service mspace_malloc requests. You can |
| 1027 | control the sizes of incremental increases of this space by |
| 1028 | compiling with a different DEFAULT_GRANULARITY or dynamically |
| 1029 | setting with mallopt(M_GRANULARITY, value). |
| 1030 | */ |
| 1031 | mspace create_mspace(size_t capacity, int locked); |
| 1032 | |
| 1033 | /* |
| 1034 | destroy_mspace destroys the given space, and attempts to return all |
| 1035 | of its memory back to the system, returning the total number of |
| 1036 | bytes freed. After destruction, the results of access to all memory |
| 1037 | used by the space become undefined. |
| 1038 | */ |
| 1039 | size_t destroy_mspace(mspace msp); |
| 1040 | |
| 1041 | /* |
| 1042 | create_mspace_with_base uses the memory supplied as the initial base |
| 1043 | of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this |
| 1044 | space is used for bookkeeping, so the capacity must be at least this |
| 1045 | large. (Otherwise 0 is returned.) When this initial space is |
| 1046 | exhausted, additional memory will be obtained from the system. |
| 1047 | Destroying this space will deallocate all additionally allocated |
| 1048 | space (if possible) but not the initial base. |
| 1049 | */ |
| 1050 | mspace create_mspace_with_base(void* base, size_t capacity, int locked); |
| 1051 | |
| 1052 | /* |
| 1053 | mspace_malloc behaves as malloc, but operates within |
| 1054 | the given space. |
| 1055 | */ |
| 1056 | void* mspace_malloc(mspace msp, size_t bytes); |
| 1057 | |
| 1058 | /* |
| 1059 | mspace_free behaves as free, but operates within |
| 1060 | the given space. |
| 1061 | |
| 1062 | If compiled with FOOTERS==1, mspace_free is not actually needed. |
| 1063 | free may be called instead of mspace_free because freed chunks from |
| 1064 | any space are handled by their originating spaces. |
| 1065 | */ |
| 1066 | void mspace_free(mspace msp, void* mem); |
| 1067 | |
| 1068 | /* |
| 1069 | mspace_realloc behaves as realloc, but operates within |
| 1070 | the given space. |
| 1071 | |
| 1072 | If compiled with FOOTERS==1, mspace_realloc is not actually |
| 1073 | needed. realloc may be called instead of mspace_realloc because |
| 1074 | realloced chunks from any space are handled by their originating |
| 1075 | spaces. |
| 1076 | */ |
| 1077 | void* mspace_realloc(mspace msp, void* mem, size_t newsize); |
| 1078 | |
| 1079 | /* |
| 1080 | mspace_calloc behaves as calloc, but operates within |
| 1081 | the given space. |
| 1082 | */ |
| 1083 | void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); |
| 1084 | |
| 1085 | /* |
| 1086 | mspace_memalign behaves as memalign, but operates within |
| 1087 | the given space. |
| 1088 | */ |
| 1089 | void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); |
| 1090 | |
| 1091 | /* |
| 1092 | mspace_independent_calloc behaves as independent_calloc, but |
| 1093 | operates within the given space. |
| 1094 | */ |
| 1095 | void** mspace_independent_calloc(mspace msp, size_t n_elements, |
| 1096 | size_t elem_size, void* chunks[]); |
| 1097 | |
| 1098 | /* |
| 1099 | mspace_independent_comalloc behaves as independent_comalloc, but |
| 1100 | operates within the given space. |
| 1101 | */ |
| 1102 | void** mspace_independent_comalloc(mspace msp, size_t n_elements, |
| 1103 | size_t sizes[], void* chunks[]); |
| 1104 | |
| 1105 | /* |
| 1106 | mspace_footprint() returns the number of bytes obtained from the |
| 1107 | system for this space. |
| 1108 | */ |
| 1109 | size_t mspace_footprint(mspace msp); |
| 1110 | |
| 1111 | /* |
| 1112 | mspace_max_footprint() returns the peak number of bytes obtained from the |
| 1113 | system for this space. |
| 1114 | */ |
| 1115 | size_t mspace_max_footprint(mspace msp); |
| 1116 | |
| 1117 | |
| 1118 | #if !NO_MALLINFO |
| 1119 | /* |
| 1120 | mspace_mallinfo behaves as mallinfo, but reports properties of |
| 1121 | the given space. |
| 1122 | */ |
| 1123 | struct mallinfo mspace_mallinfo(mspace msp); |
| 1124 | #endif /* NO_MALLINFO */ |
| 1125 | |
| 1126 | /* |
| 1127 | mspace_malloc_stats behaves as malloc_stats, but reports |
| 1128 | properties of the given space. |
| 1129 | */ |
| 1130 | void mspace_malloc_stats(mspace msp); |
| 1131 | |
| 1132 | /* |
| 1133 | mspace_trim behaves as malloc_trim, but |
| 1134 | operates within the given space. |
| 1135 | */ |
| 1136 | int mspace_trim(mspace msp, size_t pad); |
| 1137 | |
| 1138 | /* |
| 1139 | An alias for mallopt. |
| 1140 | */ |
| 1141 | int mspace_mallopt(int, int); |
| 1142 | |
| 1143 | #endif /* MSPACES */ |
| 1144 | |
| 1145 | #ifdef __cplusplus |
| 1146 | }; /* end of extern "C" */ |
| 1147 | #endif /* __cplusplus */ |
| 1148 | |
| 1149 | /* |
| 1150 | ======================================================================== |
| 1151 | To make a fully customizable malloc.h header file, cut everything |
| 1152 | above this line, put into file malloc.h, edit to suit, and #include it |
| 1153 | on the next line, as well as in programs that use this malloc. |
| 1154 | ======================================================================== |
| 1155 | */ |
| 1156 | |
| 1157 | /* #include "malloc.h" */ |
| 1158 | |
| 1159 | /*------------------------------ internal #includes ---------------------- */ |
| 1160 | |
| 1161 | #ifdef _MSC_VER |
| 1162 | #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ |
| 1163 | #endif /* _MSC_VER */ |
| 1164 | |
| 1165 | #ifndef LACKS_STDIO_H |
| 1166 | #include <stdio.h> /* for printing in malloc_stats */ |
| 1167 | #endif |
| 1168 | |
| 1169 | #ifndef LACKS_ERRNO_H |
| 1170 | #include <errno.h> /* for MALLOC_FAILURE_ACTION */ |
| 1171 | #endif /* LACKS_ERRNO_H */ |
| 1172 | #if FOOTERS |
| 1173 | #include <time.h> /* for magic initialization */ |
| 1174 | #endif /* FOOTERS */ |
| 1175 | #ifndef LACKS_STDLIB_H |
| 1176 | #include <stdlib.h> /* for abort() */ |
| 1177 | #endif /* LACKS_STDLIB_H */ |
| 1178 | #ifdef DEBUG |
| 1179 | #if ABORT_ON_ASSERT_FAILURE |
| 1180 | #define assert(x) if(!(x)) ABORT |
| 1181 | #else /* ABORT_ON_ASSERT_FAILURE */ |
| 1182 | #include <assert.h> |
| 1183 | #endif /* ABORT_ON_ASSERT_FAILURE */ |
| 1184 | #else /* DEBUG */ |
| 1185 | #define assert(x) |
| 1186 | #endif /* DEBUG */ |
| 1187 | #ifndef LACKS_STRING_H |
| 1188 | #include <string.h> /* for memset etc */ |
| 1189 | #endif /* LACKS_STRING_H */ |
| 1190 | #if USE_BUILTIN_FFS |
| 1191 | #ifndef LACKS_STRINGS_H |
| 1192 | #include <strings.h> /* for ffs */ |
| 1193 | #endif /* LACKS_STRINGS_H */ |
| 1194 | #endif /* USE_BUILTIN_FFS */ |
| 1195 | #if HAVE_MMAP |
| 1196 | #ifndef LACKS_SYS_MMAN_H |
| 1197 | #include <sys/mman.h> /* for mmap */ |
| 1198 | #endif /* LACKS_SYS_MMAN_H */ |
| 1199 | #ifndef LACKS_FCNTL_H |
| 1200 | #include <fcntl.h> |
| 1201 | #endif /* LACKS_FCNTL_H */ |
| 1202 | #endif /* HAVE_MMAP */ |
| 1203 | #if HAVE_MORECORE |
| 1204 | #ifndef LACKS_UNISTD_H |
| 1205 | #include <unistd.h> /* for sbrk */ |
| 1206 | #else /* LACKS_UNISTD_H */ |
| 1207 | #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) |
| 1208 | extern void* sbrk(ptrdiff_t); |
| 1209 | #endif /* FreeBSD etc */ |
| 1210 | #endif /* LACKS_UNISTD_H */ |
| 1211 | #endif /* HAVE_MMAP */ |
| 1212 | |
| 1213 | #ifndef WIN32 |
| 1214 | #ifndef malloc_getpagesize |
| 1215 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ |
| 1216 | # ifndef _SC_PAGE_SIZE |
| 1217 | # define _SC_PAGE_SIZE _SC_PAGESIZE |
| 1218 | # endif |
| 1219 | # endif |
| 1220 | # ifdef _SC_PAGE_SIZE |
| 1221 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) |
| 1222 | # else |
| 1223 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) |
| 1224 | extern size_t getpagesize(); |
| 1225 | # define malloc_getpagesize getpagesize() |
| 1226 | # else |
| 1227 | # ifdef WIN32 /* use supplied emulation of getpagesize */ |
| 1228 | # define malloc_getpagesize getpagesize() |
| 1229 | # else |
| 1230 | # ifndef LACKS_SYS_PARAM_H |
| 1231 | # include <sys/param.h> |
| 1232 | # endif |
| 1233 | # ifdef EXEC_PAGESIZE |
| 1234 | # define malloc_getpagesize EXEC_PAGESIZE |
| 1235 | # else |
| 1236 | # ifdef NBPG |
| 1237 | # ifndef CLSIZE |
| 1238 | # define malloc_getpagesize NBPG |
| 1239 | # else |
| 1240 | # define malloc_getpagesize (NBPG * CLSIZE) |
| 1241 | # endif |
| 1242 | # else |
| 1243 | # ifdef NBPC |
| 1244 | # define malloc_getpagesize NBPC |
| 1245 | # else |
| 1246 | # ifdef PAGESIZE |
| 1247 | # define malloc_getpagesize PAGESIZE |
| 1248 | # else /* just guess */ |
| 1249 | # define malloc_getpagesize ((size_t)4096U) |
| 1250 | # endif |
| 1251 | # endif |
| 1252 | # endif |
| 1253 | # endif |
| 1254 | # endif |
| 1255 | # endif |
| 1256 | # endif |
| 1257 | #endif |
| 1258 | #endif |
| 1259 | |
| 1260 | /* ------------------- size_t and alignment properties -------------------- */ |
| 1261 | |
| 1262 | /* The byte and bit size of a size_t */ |
| 1263 | #define SIZE_T_SIZE (sizeof(size_t)) |
| 1264 | #define SIZE_T_BITSIZE (sizeof(size_t) << 3) |
| 1265 | |
| 1266 | /* Some constants coerced to size_t */ |
| 1267 | /* Annoying but necessary to avoid errors on some plaftorms */ |
| 1268 | #define SIZE_T_ZERO ((size_t)0) |
| 1269 | #define SIZE_T_ONE ((size_t)1) |
| 1270 | #define SIZE_T_TWO ((size_t)2) |
| 1271 | #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) |
| 1272 | #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) |
| 1273 | #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) |
| 1274 | #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) |
| 1275 | |
| 1276 | /* The bit mask value corresponding to MALLOC_ALIGNMENT */ |
| 1277 | #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) |
| 1278 | |
| 1279 | /* True if address a has acceptable alignment */ |
| 1280 | #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) |
| 1281 | |
| 1282 | /* the number of bytes to offset an address to align it */ |
| 1283 | #define align_offset(A)\ |
| 1284 | ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ |
| 1285 | ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) |
| 1286 | |
| 1287 | /* -------------------------- MMAP preliminaries ------------------------- */ |
| 1288 | |
| 1289 | /* |
| 1290 | If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and |
| 1291 | checks to fail so compiler optimizer can delete code rather than |
| 1292 | using so many "#if"s. |
| 1293 | */ |
| 1294 | |
| 1295 | |
| 1296 | /* MORECORE and MMAP must return MFAIL on failure */ |
| 1297 | #define MFAIL ((void*)(MAX_SIZE_T)) |
| 1298 | #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ |
| 1299 | |
| 1300 | #if !HAVE_MMAP |
| 1301 | #define IS_MMAPPED_BIT (SIZE_T_ZERO) |
| 1302 | #define USE_MMAP_BIT (SIZE_T_ZERO) |
| 1303 | #define CALL_MMAP(s) MFAIL |
| 1304 | #define CALL_MUNMAP(a, s) (-1) |
| 1305 | #define DIRECT_MMAP(s) MFAIL |
| 1306 | |
| 1307 | #else /* HAVE_MMAP */ |
| 1308 | #define IS_MMAPPED_BIT (SIZE_T_ONE) |
| 1309 | #define USE_MMAP_BIT (SIZE_T_ONE) |
| 1310 | |
| 1311 | #ifndef WIN32 |
| 1312 | #define CALL_MUNMAP(a, s) munmap((a), (s)) |
| 1313 | #define MMAP_PROT (PROT_READ|PROT_WRITE) |
| 1314 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
| 1315 | #define MAP_ANONYMOUS MAP_ANON |
| 1316 | #endif /* MAP_ANON */ |
| 1317 | #ifdef MAP_ANONYMOUS |
| 1318 | #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) |
| 1319 | #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) |
| 1320 | #else /* MAP_ANONYMOUS */ |
| 1321 | /* |
| 1322 | Nearly all versions of mmap support MAP_ANONYMOUS, so the following |
| 1323 | is unlikely to be needed, but is supplied just in case. |
| 1324 | */ |
| 1325 | #define MMAP_FLAGS (MAP_PRIVATE) |
| 1326 | static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ |
| 1327 | #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ |
| 1328 | (dev_zero_fd = open("/dev/zero", O_RDWR), \ |
| 1329 | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ |
| 1330 | mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) |
| 1331 | #endif /* MAP_ANONYMOUS */ |
| 1332 | |
| 1333 | #define DIRECT_MMAP(s) CALL_MMAP(s) |
| 1334 | #else /* WIN32 */ |
| 1335 | |
| 1336 | /* Win32 MMAP via VirtualAlloc */ |
| 1337 | static void* win32mmap(size_t size) { |
| 1338 | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); |
| 1339 | return (ptr != 0)? ptr: MFAIL; |
| 1340 | } |
| 1341 | |
| 1342 | /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ |
| 1343 | static void* win32direct_mmap(size_t size) { |
| 1344 | void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, |
| 1345 | PAGE_READWRITE); |
| 1346 | return (ptr != 0)? ptr: MFAIL; |
| 1347 | } |
| 1348 | |
| 1349 | /* This function supports releasing coalesed segments */ |
| 1350 | static int win32munmap(void* ptr, size_t size) { |
| 1351 | MEMORY_BASIC_INFORMATION minfo; |
| 1352 | char* cptr = ptr; |
| 1353 | while (size) { |
| 1354 | if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) |
| 1355 | return -1; |
| 1356 | if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || |
| 1357 | minfo.State != MEM_COMMIT || minfo.RegionSize > size) |
| 1358 | return -1; |
| 1359 | if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) |
| 1360 | return -1; |
| 1361 | cptr += minfo.RegionSize; |
| 1362 | size -= minfo.RegionSize; |
| 1363 | } |
| 1364 | return 0; |
| 1365 | } |
| 1366 | |
| 1367 | #define CALL_MMAP(s) win32mmap(s) |
| 1368 | #define CALL_MUNMAP(a, s) win32munmap((a), (s)) |
| 1369 | #define DIRECT_MMAP(s) win32direct_mmap(s) |
| 1370 | #endif /* WIN32 */ |
| 1371 | #endif /* HAVE_MMAP */ |
| 1372 | |
| 1373 | #if HAVE_MMAP && HAVE_MREMAP |
| 1374 | #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) |
| 1375 | #else /* HAVE_MMAP && HAVE_MREMAP */ |
| 1376 | #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL |
| 1377 | #endif /* HAVE_MMAP && HAVE_MREMAP */ |
| 1378 | |
| 1379 | #if HAVE_MORECORE |
| 1380 | #define CALL_MORECORE(S) MORECORE(S) |
| 1381 | #else /* HAVE_MORECORE */ |
| 1382 | #define CALL_MORECORE(S) MFAIL |
| 1383 | #endif /* HAVE_MORECORE */ |
| 1384 | |
| 1385 | /* mstate bit set if continguous morecore disabled or failed */ |
| 1386 | #define USE_NONCONTIGUOUS_BIT (4U) |
| 1387 | |
| 1388 | /* segment bit set in create_mspace_with_base */ |
| 1389 | #define EXTERN_BIT (8U) |
| 1390 | |
| 1391 | |
| 1392 | /* --------------------------- Lock preliminaries ------------------------ */ |
| 1393 | |
| 1394 | #if USE_LOCKS |
| 1395 | |
| 1396 | /* |
| 1397 | When locks are defined, there are up to two global locks: |
| 1398 | |
| 1399 | * If HAVE_MORECORE, morecore_mutex protects sequences of calls to |
| 1400 | MORECORE. In many cases sys_alloc requires two calls, that should |
| 1401 | not be interleaved with calls by other threads. This does not |
| 1402 | protect against direct calls to MORECORE by other threads not |
| 1403 | using this lock, so there is still code to cope the best we can on |
| 1404 | interference. |
| 1405 | |
| 1406 | * magic_init_mutex ensures that mparams.magic and other |
| 1407 | unique mparams values are initialized only once. |
| 1408 | */ |
| 1409 | |
| 1410 | #ifndef WIN32 |
| 1411 | /* By default use posix locks */ |
| 1412 | #include <pthread.h> |
| 1413 | #define MLOCK_T pthread_mutex_t |
| 1414 | #define INITIAL_LOCK(l) pthread_mutex_init(l, NULL) |
| 1415 | #define ACQUIRE_LOCK(l) pthread_mutex_lock(l) |
| 1416 | #define RELEASE_LOCK(l) pthread_mutex_unlock(l) |
| 1417 | |
| 1418 | #if HAVE_MORECORE |
| 1419 | static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER; |
| 1420 | #endif /* HAVE_MORECORE */ |
| 1421 | |
| 1422 | static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER; |
| 1423 | |
| 1424 | #else /* WIN32 */ |
| 1425 | /* |
| 1426 | Because lock-protected regions have bounded times, and there |
| 1427 | are no recursive lock calls, we can use simple spinlocks. |
| 1428 | */ |
| 1429 | |
| 1430 | #define MLOCK_T long |
| 1431 | static int win32_acquire_lock (MLOCK_T *sl) { |
| 1432 | for (;;) { |
| 1433 | #ifdef InterlockedCompareExchangePointer |
| 1434 | if (!InterlockedCompareExchange(sl, 1, 0)) |
| 1435 | return 0; |
| 1436 | #else /* Use older void* version */ |
| 1437 | if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0)) |
| 1438 | return 0; |
| 1439 | #endif /* InterlockedCompareExchangePointer */ |
| 1440 | Sleep (0); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | static void win32_release_lock (MLOCK_T *sl) { |
| 1445 | InterlockedExchange (sl, 0); |
| 1446 | } |
| 1447 | |
| 1448 | #define INITIAL_LOCK(l) *(l)=0 |
| 1449 | #define ACQUIRE_LOCK(l) win32_acquire_lock(l) |
| 1450 | #define RELEASE_LOCK(l) win32_release_lock(l) |
| 1451 | #if HAVE_MORECORE |
| 1452 | static MLOCK_T morecore_mutex; |
| 1453 | #endif /* HAVE_MORECORE */ |
| 1454 | static MLOCK_T magic_init_mutex; |
| 1455 | #endif /* WIN32 */ |
| 1456 | |
| 1457 | #define USE_LOCK_BIT (2U) |
| 1458 | #else /* USE_LOCKS */ |
| 1459 | #define USE_LOCK_BIT (0U) |
| 1460 | #define INITIAL_LOCK(l) |
| 1461 | #endif /* USE_LOCKS */ |
| 1462 | |
| 1463 | #if USE_LOCKS && HAVE_MORECORE |
| 1464 | #define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); |
| 1465 | #define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); |
| 1466 | #else /* USE_LOCKS && HAVE_MORECORE */ |
| 1467 | #define ACQUIRE_MORECORE_LOCK() |
| 1468 | #define RELEASE_MORECORE_LOCK() |
| 1469 | #endif /* USE_LOCKS && HAVE_MORECORE */ |
| 1470 | |
| 1471 | #if USE_LOCKS |
| 1472 | #define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); |
| 1473 | #define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); |
| 1474 | #else /* USE_LOCKS */ |
| 1475 | #define ACQUIRE_MAGIC_INIT_LOCK() |
| 1476 | #define RELEASE_MAGIC_INIT_LOCK() |
| 1477 | #endif /* USE_LOCKS */ |
| 1478 | |
| 1479 | |
| 1480 | /* ----------------------- Chunk representations ------------------------ */ |
| 1481 | |
| 1482 | /* |
| 1483 | (The following includes lightly edited explanations by Colin Plumb.) |
| 1484 | |
| 1485 | The malloc_chunk declaration below is misleading (but accurate and |
| 1486 | necessary). It declares a "view" into memory allowing access to |
| 1487 | necessary fields at known offsets from a given base. |
| 1488 | |
| 1489 | Chunks of memory are maintained using a `boundary tag' method as |
| 1490 | originally described by Knuth. (See the paper by Paul Wilson |
| 1491 | ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such |
| 1492 | techniques.) Sizes of free chunks are stored both in the front of |
| 1493 | each chunk and at the end. This makes consolidating fragmented |
| 1494 | chunks into bigger chunks fast. The head fields also hold bits |
| 1495 | representing whether chunks are free or in use. |
| 1496 | |
| 1497 | Here are some pictures to make it clearer. They are "exploded" to |
| 1498 | show that the state of a chunk can be thought of as extending from |
| 1499 | the high 31 bits of the head field of its header through the |
| 1500 | prev_foot and PINUSE_BIT bit of the following chunk header. |
| 1501 | |
| 1502 | A chunk that's in use looks like: |
| 1503 | |
| 1504 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1505 | | Size of previous chunk (if P = 1) | |
| 1506 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1507 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| |
| 1508 | | Size of this chunk 1| +-+ |
| 1509 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1510 | | | |
| 1511 | +- -+ |
| 1512 | | | |
| 1513 | +- -+ |
| 1514 | | : |
| 1515 | +- size - sizeof(size_t) available payload bytes -+ |
| 1516 | : | |
| 1517 | chunk-> +- -+ |
| 1518 | | | |
| 1519 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1520 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| |
| 1521 | | Size of next chunk (may or may not be in use) | +-+ |
| 1522 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1523 | |
| 1524 | And if it's free, it looks like this: |
| 1525 | |
| 1526 | chunk-> +- -+ |
| 1527 | | User payload (must be in use, or we would have merged!) | |
| 1528 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1529 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| |
| 1530 | | Size of this chunk 0| +-+ |
| 1531 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1532 | | Next pointer | |
| 1533 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1534 | | Prev pointer | |
| 1535 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1536 | | : |
| 1537 | +- size - sizeof(struct chunk) unused bytes -+ |
| 1538 | : | |
| 1539 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1540 | | Size of this chunk | |
| 1541 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1542 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| |
| 1543 | | Size of next chunk (must be in use, or we would have merged)| +-+ |
| 1544 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1545 | | : |
| 1546 | +- User payload -+ |
| 1547 | : | |
| 1548 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1549 | |0| |
| 1550 | +-+ |
| 1551 | Note that since we always merge adjacent free chunks, the chunks |
| 1552 | adjacent to a free chunk must be in use. |
| 1553 | |
| 1554 | Given a pointer to a chunk (which can be derived trivially from the |
| 1555 | payload pointer) we can, in O(1) time, find out whether the adjacent |
| 1556 | chunks are free, and if so, unlink them from the lists that they |
| 1557 | are on and merge them with the current chunk. |
| 1558 | |
| 1559 | Chunks always begin on even word boundaries, so the mem portion |
| 1560 | (which is returned to the user) is also on an even word boundary, and |
| 1561 | thus at least double-word aligned. |
| 1562 | |
| 1563 | The P (PINUSE_BIT) bit, stored in the unused low-order bit of the |
| 1564 | chunk size (which is always a multiple of two words), is an in-use |
| 1565 | bit for the *previous* chunk. If that bit is *clear*, then the |
| 1566 | word before the current chunk size contains the previous chunk |
| 1567 | size, and can be used to find the front of the previous chunk. |
| 1568 | The very first chunk allocated always has this bit set, preventing |
| 1569 | access to non-existent (or non-owned) memory. If pinuse is set for |
| 1570 | any given chunk, then you CANNOT determine the size of the |
| 1571 | previous chunk, and might even get a memory addressing fault when |
| 1572 | trying to do so. |
| 1573 | |
| 1574 | The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of |
| 1575 | the chunk size redundantly records whether the current chunk is |
| 1576 | inuse. This redundancy enables usage checks within free and realloc, |
| 1577 | and reduces indirection when freeing and consolidating chunks. |
| 1578 | |
| 1579 | Each freshly allocated chunk must have both cinuse and pinuse set. |
| 1580 | That is, each allocated chunk borders either a previously allocated |
| 1581 | and still in-use chunk, or the base of its memory arena. This is |
| 1582 | ensured by making all allocations from the the `lowest' part of any |
| 1583 | found chunk. Further, no free chunk physically borders another one, |
| 1584 | so each free chunk is known to be preceded and followed by either |
| 1585 | inuse chunks or the ends of memory. |
| 1586 | |
| 1587 | Note that the `foot' of the current chunk is actually represented |
| 1588 | as the prev_foot of the NEXT chunk. This makes it easier to |
| 1589 | deal with alignments etc but can be very confusing when trying |
| 1590 | to extend or adapt this code. |
| 1591 | |
| 1592 | The exceptions to all this are |
| 1593 | |
| 1594 | 1. The special chunk `top' is the top-most available chunk (i.e., |
| 1595 | the one bordering the end of available memory). It is treated |
| 1596 | specially. Top is never included in any bin, is used only if |
| 1597 | no other chunk is available, and is released back to the |
| 1598 | system if it is very large (see M_TRIM_THRESHOLD). In effect, |
| 1599 | the top chunk is treated as larger (and thus less well |
| 1600 | fitting) than any other available chunk. The top chunk |
| 1601 | doesn't update its trailing size field since there is no next |
| 1602 | contiguous chunk that would have to index off it. However, |
| 1603 | space is still allocated for it (TOP_FOOT_SIZE) to enable |
| 1604 | separation or merging when space is extended. |
| 1605 | |
| 1606 | 3. Chunks allocated via mmap, which have the lowest-order bit |
| 1607 | (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set |
| 1608 | PINUSE_BIT in their head fields. Because they are allocated |
| 1609 | one-by-one, each must carry its own prev_foot field, which is |
| 1610 | also used to hold the offset this chunk has within its mmapped |
| 1611 | region, which is needed to preserve alignment. Each mmapped |
| 1612 | chunk is trailed by the first two fields of a fake next-chunk |
| 1613 | for sake of usage checks. |
| 1614 | |
| 1615 | */ |
| 1616 | |
| 1617 | struct malloc_chunk { |
| 1618 | size_t prev_foot; /* Size of previous chunk (if free). */ |
| 1619 | size_t head; /* Size and inuse bits. */ |
| 1620 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
| 1621 | struct malloc_chunk* bk; |
| 1622 | }; |
| 1623 | |
| 1624 | typedef struct malloc_chunk mchunk; |
| 1625 | typedef struct malloc_chunk* mchunkptr; |
| 1626 | typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ |
| 1627 | typedef size_t bindex_t; /* Described below */ |
| 1628 | typedef unsigned int binmap_t; /* Described below */ |
| 1629 | typedef unsigned int flag_t; /* The type of various bit flag sets */ |
| 1630 | |
| 1631 | /* ------------------- Chunks sizes and alignments ----------------------- */ |
| 1632 | |
| 1633 | #define MCHUNK_SIZE (sizeof(mchunk)) |
| 1634 | |
| 1635 | #if FOOTERS |
| 1636 | #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) |
| 1637 | #else /* FOOTERS */ |
| 1638 | #define CHUNK_OVERHEAD (SIZE_T_SIZE) |
| 1639 | #endif /* FOOTERS */ |
| 1640 | |
| 1641 | /* MMapped chunks need a second word of overhead ... */ |
| 1642 | #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) |
| 1643 | /* ... and additional padding for fake next-chunk at foot */ |
| 1644 | #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) |
| 1645 | |
| 1646 | /* The smallest size we can malloc is an aligned minimal chunk */ |
| 1647 | #define MIN_CHUNK_SIZE\ |
| 1648 | ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) |
| 1649 | |
| 1650 | /* conversion from malloc headers to user pointers, and back */ |
| 1651 | #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) |
| 1652 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) |
| 1653 | /* chunk associated with aligned address A */ |
| 1654 | #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) |
| 1655 | |
| 1656 | /* Bounds on request (not chunk) sizes. */ |
| 1657 | #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) |
| 1658 | #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) |
| 1659 | |
| 1660 | /* pad request bytes into a usable size */ |
| 1661 | #define pad_request(req) \ |
| 1662 | (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) |
| 1663 | |
| 1664 | /* pad request, checking for minimum (but not maximum) */ |
| 1665 | #define request2size(req) \ |
| 1666 | (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) |
| 1667 | |
| 1668 | |
| 1669 | /* ------------------ Operations on head and foot fields ----------------- */ |
| 1670 | |
| 1671 | /* |
| 1672 | The head field of a chunk is or'ed with PINUSE_BIT when previous |
| 1673 | adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in |
| 1674 | use. If the chunk was obtained with mmap, the prev_foot field has |
| 1675 | IS_MMAPPED_BIT set, otherwise holding the offset of the base of the |
| 1676 | mmapped region to the base of the chunk. |
| 1677 | */ |
| 1678 | |
| 1679 | #define PINUSE_BIT (SIZE_T_ONE) |
| 1680 | #define CINUSE_BIT (SIZE_T_TWO) |
| 1681 | #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) |
| 1682 | |
| 1683 | /* Head value for fenceposts */ |
| 1684 | #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) |
| 1685 | |
| 1686 | /* extraction of fields from head words */ |
| 1687 | #define cinuse(p) ((p)->head & CINUSE_BIT) |
| 1688 | #define pinuse(p) ((p)->head & PINUSE_BIT) |
| 1689 | #define chunksize(p) ((p)->head & ~(INUSE_BITS)) |
| 1690 | |
| 1691 | #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) |
| 1692 | #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) |
| 1693 | |
| 1694 | /* Treat space at ptr +/- offset as a chunk */ |
| 1695 | #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) |
| 1696 | #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) |
| 1697 | |
| 1698 | /* Ptr to next or previous physical malloc_chunk. */ |
| 1699 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS))) |
| 1700 | #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) |
| 1701 | |
| 1702 | /* extract next chunk's pinuse bit */ |
| 1703 | #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) |
| 1704 | |
| 1705 | /* Get/set size at footer */ |
| 1706 | #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) |
| 1707 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) |
| 1708 | |
| 1709 | /* Set size, pinuse bit, and foot */ |
| 1710 | #define set_size_and_pinuse_of_free_chunk(p, s)\ |
| 1711 | ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) |
| 1712 | |
| 1713 | /* Set size, pinuse bit, foot, and clear next pinuse */ |
| 1714 | #define set_free_with_pinuse(p, s, n)\ |
| 1715 | (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) |
| 1716 | |
| 1717 | #define is_mmapped(p)\ |
| 1718 | (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) |
| 1719 | |
| 1720 | /* Get the internal overhead associated with chunk p */ |
| 1721 | #define overhead_for(p)\ |
| 1722 | (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) |
| 1723 | |
| 1724 | /* Return true if malloced space is not necessarily cleared */ |
| 1725 | #if MMAP_CLEARS |
| 1726 | #define calloc_must_clear(p) (!is_mmapped(p)) |
| 1727 | #else /* MMAP_CLEARS */ |
| 1728 | #define calloc_must_clear(p) (1) |
| 1729 | #endif /* MMAP_CLEARS */ |
| 1730 | |
| 1731 | /* ---------------------- Overlaid data structures ----------------------- */ |
| 1732 | |
| 1733 | /* |
| 1734 | When chunks are not in use, they are treated as nodes of either |
| 1735 | lists or trees. |
| 1736 | |
| 1737 | "Small" chunks are stored in circular doubly-linked lists, and look |
| 1738 | like this: |
| 1739 | |
| 1740 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1741 | | Size of previous chunk | |
| 1742 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1743 | `head:' | Size of chunk, in bytes |P| |
| 1744 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1745 | | Forward pointer to next chunk in list | |
| 1746 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1747 | | Back pointer to previous chunk in list | |
| 1748 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1749 | | Unused space (may be 0 bytes long) . |
| 1750 | . . |
| 1751 | . | |
| 1752 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1753 | `foot:' | Size of chunk, in bytes | |
| 1754 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1755 | |
| 1756 | Larger chunks are kept in a form of bitwise digital trees (aka |
| 1757 | tries) keyed on chunksizes. Because malloc_tree_chunks are only for |
| 1758 | free chunks greater than 256 bytes, their size doesn't impose any |
| 1759 | constraints on user chunk sizes. Each node looks like: |
| 1760 | |
| 1761 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1762 | | Size of previous chunk | |
| 1763 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1764 | `head:' | Size of chunk, in bytes |P| |
| 1765 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1766 | | Forward pointer to next chunk of same size | |
| 1767 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1768 | | Back pointer to previous chunk of same size | |
| 1769 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1770 | | Pointer to left child (child[0]) | |
| 1771 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1772 | | Pointer to right child (child[1]) | |
| 1773 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1774 | | Pointer to parent | |
| 1775 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1776 | | bin index of this chunk | |
| 1777 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1778 | | Unused space . |
| 1779 | . | |
| 1780 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1781 | `foot:' | Size of chunk, in bytes | |
| 1782 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 1783 | |
| 1784 | Each tree holding treenodes is a tree of unique chunk sizes. Chunks |
| 1785 | of the same size are arranged in a circularly-linked list, with only |
| 1786 | the oldest chunk (the next to be used, in our FIFO ordering) |
| 1787 | actually in the tree. (Tree members are distinguished by a non-null |
| 1788 | parent pointer.) If a chunk with the same size an an existing node |
| 1789 | is inserted, it is linked off the existing node using pointers that |
| 1790 | work in the same way as fd/bk pointers of small chunks. |
| 1791 | |
| 1792 | Each tree contains a power of 2 sized range of chunk sizes (the |
| 1793 | smallest is 0x100 <= x < 0x180), which is is divided in half at each |
| 1794 | tree level, with the chunks in the smaller half of the range (0x100 |
| 1795 | <= x < 0x140 for the top nose) in the left subtree and the larger |
| 1796 | half (0x140 <= x < 0x180) in the right subtree. This is, of course, |
| 1797 | done by inspecting individual bits. |
| 1798 | |
| 1799 | Using these rules, each node's left subtree contains all smaller |
| 1800 | sizes than its right subtree. However, the node at the root of each |
| 1801 | subtree has no particular ordering relationship to either. (The |
| 1802 | dividing line between the subtree sizes is based on trie relation.) |
| 1803 | If we remove the last chunk of a given size from the interior of the |
| 1804 | tree, we need to replace it with a leaf node. The tree ordering |
| 1805 | rules permit a node to be replaced by any leaf below it. |
| 1806 | |
| 1807 | The smallest chunk in a tree (a common operation in a best-fit |
| 1808 | allocator) can be found by walking a path to the leftmost leaf in |
| 1809 | the tree. Unlike a usual binary tree, where we follow left child |
| 1810 | pointers until we reach a null, here we follow the right child |
| 1811 | pointer any time the left one is null, until we reach a leaf with |
| 1812 | both child pointers null. The smallest chunk in the tree will be |
| 1813 | somewhere along that path. |
| 1814 | |
| 1815 | The worst case number of steps to add, find, or remove a node is |
| 1816 | bounded by the number of bits differentiating chunks within |
| 1817 | bins. Under current bin calculations, this ranges from 6 up to 21 |
| 1818 | (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case |
| 1819 | is of course much better. |
| 1820 | */ |
| 1821 | |
| 1822 | struct malloc_tree_chunk { |
| 1823 | /* The first four fields must be compatible with malloc_chunk */ |
| 1824 | size_t prev_foot; |
| 1825 | size_t head; |
| 1826 | struct malloc_tree_chunk* fd; |
| 1827 | struct malloc_tree_chunk* bk; |
| 1828 | |
| 1829 | struct malloc_tree_chunk* child[2]; |
| 1830 | struct malloc_tree_chunk* parent; |
| 1831 | bindex_t index; |
| 1832 | }; |
| 1833 | |
| 1834 | typedef struct malloc_tree_chunk tchunk; |
| 1835 | typedef struct malloc_tree_chunk* tchunkptr; |
| 1836 | typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ |
| 1837 | |
| 1838 | /* A little helper macro for trees */ |
| 1839 | #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) |
| 1840 | |
| 1841 | /* ----------------------------- Segments -------------------------------- */ |
| 1842 | |
| 1843 | /* |
| 1844 | Each malloc space may include non-contiguous segments, held in a |
| 1845 | list headed by an embedded malloc_segment record representing the |
| 1846 | top-most space. Segments also include flags holding properties of |
| 1847 | the space. Large chunks that are directly allocated by mmap are not |
| 1848 | included in this list. They are instead independently created and |
| 1849 | destroyed without otherwise keeping track of them. |
| 1850 | |
| 1851 | Segment management mainly comes into play for spaces allocated by |
| 1852 | MMAP. Any call to MMAP might or might not return memory that is |
| 1853 | adjacent to an existing segment. MORECORE normally contiguously |
| 1854 | extends the current space, so this space is almost always adjacent, |
| 1855 | which is simpler and faster to deal with. (This is why MORECORE is |
| 1856 | used preferentially to MMAP when both are available -- see |
| 1857 | sys_alloc.) When allocating using MMAP, we don't use any of the |
| 1858 | hinting mechanisms (inconsistently) supported in various |
| 1859 | implementations of unix mmap, or distinguish reserving from |
| 1860 | committing memory. Instead, we just ask for space, and exploit |
| 1861 | contiguity when we get it. It is probably possible to do |
| 1862 | better than this on some systems, but no general scheme seems |
| 1863 | to be significantly better. |
| 1864 | |
| 1865 | Management entails a simpler variant of the consolidation scheme |
| 1866 | used for chunks to reduce fragmentation -- new adjacent memory is |
| 1867 | normally prepended or appended to an existing segment. However, |
| 1868 | there are limitations compared to chunk consolidation that mostly |
| 1869 | reflect the fact that segment processing is relatively infrequent |
| 1870 | (occurring only when getting memory from system) and that we |
| 1871 | don't expect to have huge numbers of segments: |
| 1872 | |
| 1873 | * Segments are not indexed, so traversal requires linear scans. (It |
| 1874 | would be possible to index these, but is not worth the extra |
| 1875 | overhead and complexity for most programs on most platforms.) |
| 1876 | * New segments are only appended to old ones when holding top-most |
| 1877 | memory; if they cannot be prepended to others, they are held in |
| 1878 | different segments. |
| 1879 | |
| 1880 | Except for the top-most segment of an mstate, each segment record |
| 1881 | is kept at the tail of its segment. Segments are added by pushing |
| 1882 | segment records onto the list headed by &mstate.seg for the |
| 1883 | containing mstate. |
| 1884 | |
| 1885 | Segment flags control allocation/merge/deallocation policies: |
| 1886 | * If EXTERN_BIT set, then we did not allocate this segment, |
| 1887 | and so should not try to deallocate or merge with others. |
| 1888 | (This currently holds only for the initial segment passed |
| 1889 | into create_mspace_with_base.) |
| 1890 | * If IS_MMAPPED_BIT set, the segment may be merged with |
| 1891 | other surrounding mmapped segments and trimmed/de-allocated |
| 1892 | using munmap. |
| 1893 | * If neither bit is set, then the segment was obtained using |
| 1894 | MORECORE so can be merged with surrounding MORECORE'd segments |
| 1895 | and deallocated/trimmed using MORECORE with negative arguments. |
| 1896 | */ |
| 1897 | |
| 1898 | struct malloc_segment { |
| 1899 | char* base; /* base address */ |
| 1900 | size_t size; /* allocated size */ |
| 1901 | struct malloc_segment* next; /* ptr to next segment */ |
| 1902 | flag_t sflags; /* mmap and extern flag */ |
| 1903 | }; |
| 1904 | |
| 1905 | #define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT) |
| 1906 | #define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) |
| 1907 | |
| 1908 | typedef struct malloc_segment msegment; |
| 1909 | typedef struct malloc_segment* msegmentptr; |
| 1910 | |
| 1911 | /* ---------------------------- malloc_state ----------------------------- */ |
| 1912 | |
| 1913 | /* |
| 1914 | A malloc_state holds all of the bookkeeping for a space. |
| 1915 | The main fields are: |
| 1916 | |
| 1917 | Top |
| 1918 | The topmost chunk of the currently active segment. Its size is |
| 1919 | cached in topsize. The actual size of topmost space is |
| 1920 | topsize+TOP_FOOT_SIZE, which includes space reserved for adding |
| 1921 | fenceposts and segment records if necessary when getting more |
| 1922 | space from the system. The size at which to autotrim top is |
| 1923 | cached from mparams in trim_check, except that it is disabled if |
| 1924 | an autotrim fails. |
| 1925 | |
| 1926 | Designated victim (dv) |
| 1927 | This is the preferred chunk for servicing small requests that |
| 1928 | don't have exact fits. It is normally the chunk split off most |
| 1929 | recently to service another small request. Its size is cached in |
| 1930 | dvsize. The link fields of this chunk are not maintained since it |
| 1931 | is not kept in a bin. |
| 1932 | |
| 1933 | SmallBins |
| 1934 | An array of bin headers for free chunks. These bins hold chunks |
| 1935 | with sizes less than MIN_LARGE_SIZE bytes. Each bin contains |
| 1936 | chunks of all the same size, spaced 8 bytes apart. To simplify |
| 1937 | use in double-linked lists, each bin header acts as a malloc_chunk |
| 1938 | pointing to the real first node, if it exists (else pointing to |
| 1939 | itself). This avoids special-casing for headers. But to avoid |
| 1940 | waste, we allocate only the fd/bk pointers of bins, and then use |
| 1941 | repositioning tricks to treat these as the fields of a chunk. |
| 1942 | |
| 1943 | TreeBins |
| 1944 | Treebins are pointers to the roots of trees holding a range of |
| 1945 | sizes. There are 2 equally spaced treebins for each power of two |
| 1946 | from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything |
| 1947 | larger. |
| 1948 | |
| 1949 | Bin maps |
| 1950 | There is one bit map for small bins ("smallmap") and one for |
| 1951 | treebins ("treemap). Each bin sets its bit when non-empty, and |
| 1952 | clears the bit when empty. Bit operations are then used to avoid |
| 1953 | bin-by-bin searching -- nearly all "search" is done without ever |
| 1954 | looking at bins that won't be selected. The bit maps |
| 1955 | conservatively use 32 bits per map word, even if on 64bit system. |
| 1956 | For a good description of some of the bit-based techniques used |
| 1957 | here, see Henry S. Warren Jr's book "Hacker's Delight" (and |
| 1958 | supplement at http://hackersdelight.org/). Many of these are |
| 1959 | intended to reduce the branchiness of paths through malloc etc, as |
| 1960 | well as to reduce the number of memory locations read or written. |
| 1961 | |
| 1962 | Segments |
| 1963 | A list of segments headed by an embedded malloc_segment record |
| 1964 | representing the initial space. |
| 1965 | |
| 1966 | Address check support |
| 1967 | The least_addr field is the least address ever obtained from |
| 1968 | MORECORE or MMAP. Attempted frees and reallocs of any address less |
| 1969 | than this are trapped (unless INSECURE is defined). |
| 1970 | |
| 1971 | Magic tag |
| 1972 | A cross-check field that should always hold same value as mparams.magic. |
| 1973 | |
| 1974 | Flags |
| 1975 | Bits recording whether to use MMAP, locks, or contiguous MORECORE |
| 1976 | |
| 1977 | Statistics |
| 1978 | Each space keeps track of current and maximum system memory |
| 1979 | obtained via MORECORE or MMAP. |
| 1980 | |
| 1981 | Locking |
| 1982 | If USE_LOCKS is defined, the "mutex" lock is acquired and released |
| 1983 | around every public call using this mspace. |
| 1984 | */ |
| 1985 | |
| 1986 | /* Bin types, widths and sizes */ |
| 1987 | #define NSMALLBINS (32U) |
| 1988 | #define NTREEBINS (32U) |
| 1989 | #define SMALLBIN_SHIFT (3U) |
| 1990 | #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) |
| 1991 | #define TREEBIN_SHIFT (8U) |
| 1992 | #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) |
| 1993 | #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) |
| 1994 | #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) |
| 1995 | |
| 1996 | struct malloc_state { |
| 1997 | binmap_t smallmap; |
| 1998 | binmap_t treemap; |
| 1999 | size_t dvsize; |
| 2000 | size_t topsize; |
| 2001 | char* least_addr; |
| 2002 | mchunkptr dv; |
| 2003 | mchunkptr top; |
| 2004 | size_t trim_check; |
| 2005 | size_t magic; |
| 2006 | mchunkptr smallbins[(NSMALLBINS+1)*2]; |
| 2007 | tbinptr treebins[NTREEBINS]; |
| 2008 | size_t footprint; |
| 2009 | size_t max_footprint; |
| 2010 | flag_t mflags; |
| 2011 | #if USE_LOCKS |
| 2012 | MLOCK_T mutex; /* locate lock among fields that rarely change */ |
| 2013 | #endif /* USE_LOCKS */ |
| 2014 | msegment seg; |
| 2015 | }; |
| 2016 | |
| 2017 | typedef struct malloc_state* mstate; |
| 2018 | |
| 2019 | /* ------------- Global malloc_state and malloc_params ------------------- */ |
| 2020 | |
| 2021 | /* |
| 2022 | malloc_params holds global properties, including those that can be |
| 2023 | dynamically set using mallopt. There is a single instance, mparams, |
| 2024 | initialized in init_mparams. |
| 2025 | */ |
| 2026 | |
| 2027 | struct malloc_params { |
| 2028 | size_t magic; |
| 2029 | size_t page_size; |
| 2030 | size_t granularity; |
| 2031 | size_t mmap_threshold; |
| 2032 | size_t trim_threshold; |
| 2033 | flag_t default_mflags; |
| 2034 | }; |
| 2035 | |
| 2036 | static struct malloc_params mparams; |
| 2037 | |
| 2038 | /* The global malloc_state used for all non-"mspace" calls */ |
| 2039 | static struct malloc_state _gm_; |
| 2040 | #define gm (&_gm_) |
| 2041 | #define is_global(M) ((M) == &_gm_) |
| 2042 | #define is_initialized(M) ((M)->top != 0) |
| 2043 | |
| 2044 | /* -------------------------- system alloc setup ------------------------- */ |
| 2045 | |
| 2046 | /* Operations on mflags */ |
| 2047 | |
| 2048 | #define use_lock(M) ((M)->mflags & USE_LOCK_BIT) |
| 2049 | #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) |
| 2050 | #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) |
| 2051 | |
| 2052 | #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) |
| 2053 | #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) |
| 2054 | #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) |
| 2055 | |
| 2056 | #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) |
| 2057 | #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) |
| 2058 | |
| 2059 | #define set_lock(M,L)\ |
| 2060 | ((M)->mflags = (L)?\ |
| 2061 | ((M)->mflags | USE_LOCK_BIT) :\ |
| 2062 | ((M)->mflags & ~USE_LOCK_BIT)) |
| 2063 | |
| 2064 | /* page-align a size */ |
| 2065 | #define page_align(S)\ |
| 2066 | (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE)) |
| 2067 | |
| 2068 | /* granularity-align a size */ |
| 2069 | #define granularity_align(S)\ |
| 2070 | (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE)) |
| 2071 | |
| 2072 | #define is_page_aligned(S)\ |
| 2073 | (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) |
| 2074 | #define is_granularity_aligned(S)\ |
| 2075 | (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) |
| 2076 | |
| 2077 | /* True if segment S holds address A */ |
| 2078 | #define segment_holds(S, A)\ |
| 2079 | ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) |
| 2080 | |
| 2081 | /* Return segment holding given address */ |
| 2082 | static msegmentptr segment_holding(mstate m, char* addr) { |
| 2083 | msegmentptr sp = &m->seg; |
| 2084 | for (;;) { |
| 2085 | if (addr >= sp->base && addr < sp->base + sp->size) |
| 2086 | return sp; |
| 2087 | if ((sp = sp->next) == 0) |
| 2088 | return 0; |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | /* Return true if segment contains a segment link */ |
| 2093 | static int has_segment_link(mstate m, msegmentptr ss) { |
| 2094 | msegmentptr sp = &m->seg; |
| 2095 | for (;;) { |
| 2096 | if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) |
| 2097 | return 1; |
| 2098 | if ((sp = sp->next) == 0) |
| 2099 | return 0; |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | #ifndef MORECORE_CANNOT_TRIM |
| 2104 | #define should_trim(M,s) ((s) > (M)->trim_check) |
| 2105 | #else /* MORECORE_CANNOT_TRIM */ |
| 2106 | #define should_trim(M,s) (0) |
| 2107 | #endif /* MORECORE_CANNOT_TRIM */ |
| 2108 | |
| 2109 | /* |
| 2110 | TOP_FOOT_SIZE is padding at the end of a segment, including space |
| 2111 | that may be needed to place segment records and fenceposts when new |
| 2112 | noncontiguous segments are added. |
| 2113 | */ |
| 2114 | #define TOP_FOOT_SIZE\ |
| 2115 | (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) |
| 2116 | |
| 2117 | |
| 2118 | /* ------------------------------- Hooks -------------------------------- */ |
| 2119 | |
| 2120 | /* |
| 2121 | PREACTION should be defined to return 0 on success, and nonzero on |
| 2122 | failure. If you are not using locking, you can redefine these to do |
| 2123 | anything you like. |
| 2124 | */ |
| 2125 | |
| 2126 | #if USE_LOCKS |
| 2127 | |
| 2128 | /* Ensure locks are initialized */ |
| 2129 | #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) |
| 2130 | |
| 2131 | #define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) |
| 2132 | #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } |
| 2133 | #else /* USE_LOCKS */ |
| 2134 | |
| 2135 | #ifndef PREACTION |
| 2136 | #define PREACTION(M) (0) |
| 2137 | #endif /* PREACTION */ |
| 2138 | |
| 2139 | #ifndef POSTACTION |
| 2140 | #define POSTACTION(M) |
| 2141 | #endif /* POSTACTION */ |
| 2142 | |
| 2143 | #endif /* USE_LOCKS */ |
| 2144 | |
| 2145 | /* |
| 2146 | CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. |
| 2147 | USAGE_ERROR_ACTION is triggered on detected bad frees and |
| 2148 | reallocs. The argument p is an address that might have triggered the |
| 2149 | fault. It is ignored by the two predefined actions, but might be |
| 2150 | useful in custom actions that try to help diagnose errors. |
| 2151 | */ |
| 2152 | |
| 2153 | #if PROCEED_ON_ERROR |
| 2154 | |
| 2155 | /* A count of the number of corruption errors causing resets */ |
| 2156 | int malloc_corruption_error_count; |
| 2157 | |
| 2158 | /* default corruption action */ |
| 2159 | static void reset_on_error(mstate m); |
| 2160 | |
| 2161 | #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) |
| 2162 | #define USAGE_ERROR_ACTION(m, p) |
| 2163 | |
| 2164 | #else /* PROCEED_ON_ERROR */ |
| 2165 | |
| 2166 | #ifndef CORRUPTION_ERROR_ACTION |
| 2167 | #define CORRUPTION_ERROR_ACTION(m) ABORT |
| 2168 | #endif /* CORRUPTION_ERROR_ACTION */ |
| 2169 | |
| 2170 | #ifndef USAGE_ERROR_ACTION |
| 2171 | #define USAGE_ERROR_ACTION(m,p) ABORT |
| 2172 | #endif /* USAGE_ERROR_ACTION */ |
| 2173 | |
| 2174 | #endif /* PROCEED_ON_ERROR */ |
| 2175 | |
| 2176 | /* -------------------------- Debugging setup ---------------------------- */ |
| 2177 | |
| 2178 | #if ! DEBUG |
| 2179 | |
| 2180 | #define check_free_chunk(M,P) |
| 2181 | #define check_inuse_chunk(M,P) |
| 2182 | #define check_malloced_chunk(M,P,N) |
| 2183 | #define check_mmapped_chunk(M,P) |
| 2184 | #define check_malloc_state(M) |
| 2185 | #define check_top_chunk(M,P) |
| 2186 | |
| 2187 | #else /* DEBUG */ |
| 2188 | #define check_free_chunk(M,P) do_check_free_chunk(M,P) |
| 2189 | #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) |
| 2190 | #define check_top_chunk(M,P) do_check_top_chunk(M,P) |
| 2191 | #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) |
| 2192 | #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) |
| 2193 | #define check_malloc_state(M) do_check_malloc_state(M) |
| 2194 | |
| 2195 | static void do_check_any_chunk(mstate m, mchunkptr p); |
| 2196 | static void do_check_top_chunk(mstate m, mchunkptr p); |
| 2197 | static void do_check_mmapped_chunk(mstate m, mchunkptr p); |
| 2198 | static void do_check_inuse_chunk(mstate m, mchunkptr p); |
| 2199 | static void do_check_free_chunk(mstate m, mchunkptr p); |
| 2200 | static void do_check_malloced_chunk(mstate m, void* mem, size_t s); |
| 2201 | static void do_check_tree(mstate m, tchunkptr t); |
| 2202 | static void do_check_treebin(mstate m, bindex_t i); |
| 2203 | static void do_check_smallbin(mstate m, bindex_t i); |
| 2204 | static void do_check_malloc_state(mstate m); |
| 2205 | static int bin_find(mstate m, mchunkptr x); |
| 2206 | static size_t traverse_and_check(mstate m); |
| 2207 | #endif /* DEBUG */ |
| 2208 | |
| 2209 | /* ---------------------------- Indexing Bins ---------------------------- */ |
| 2210 | |
| 2211 | #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) |
| 2212 | #define small_index(s) ((s) >> SMALLBIN_SHIFT) |
| 2213 | #define small_index2size(i) ((i) << SMALLBIN_SHIFT) |
| 2214 | #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) |
| 2215 | |
| 2216 | /* addressing by index. See above about smallbin repositioning */ |
| 2217 | #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) |
| 2218 | #define treebin_at(M,i) (&((M)->treebins[i])) |
| 2219 | |
| 2220 | /* assign tree index for size S to variable I */ |
| 2221 | #if defined(__GNUC__) && defined(i386) |
| 2222 | #define compute_tree_index(S, I)\ |
| 2223 | {\ |
| 2224 | size_t X = S >> TREEBIN_SHIFT;\ |
| 2225 | if (X == 0)\ |
| 2226 | I = 0;\ |
| 2227 | else if (X > 0xFFFF)\ |
| 2228 | I = NTREEBINS-1;\ |
| 2229 | else {\ |
| 2230 | unsigned int K;\ |
| 2231 | __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\ |
| 2232 | I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ |
| 2233 | }\ |
| 2234 | } |
| 2235 | #else /* GNUC */ |
| 2236 | #define compute_tree_index(S, I)\ |
| 2237 | {\ |
| 2238 | size_t X = S >> TREEBIN_SHIFT;\ |
| 2239 | if (X == 0)\ |
| 2240 | I = 0;\ |
| 2241 | else if (X > 0xFFFF)\ |
| 2242 | I = NTREEBINS-1;\ |
| 2243 | else {\ |
| 2244 | unsigned int Y = (unsigned int)X;\ |
| 2245 | unsigned int N = ((Y - 0x100) >> 16) & 8;\ |
| 2246 | unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ |
| 2247 | N += K;\ |
| 2248 | N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ |
| 2249 | K = 14 - N + ((Y <<= K) >> 15);\ |
| 2250 | I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ |
| 2251 | }\ |
| 2252 | } |
| 2253 | #endif /* GNUC */ |
| 2254 | |
| 2255 | /* Bit representing maximum resolved size in a treebin at i */ |
| 2256 | #define bit_for_tree_index(i) \ |
| 2257 | (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) |
| 2258 | |
| 2259 | /* Shift placing maximum resolved bit in a treebin at i as sign bit */ |
| 2260 | #define leftshift_for_tree_index(i) \ |
| 2261 | ((i == NTREEBINS-1)? 0 : \ |
| 2262 | ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) |
| 2263 | |
| 2264 | /* The size of the smallest chunk held in bin with index i */ |
| 2265 | #define minsize_for_tree_index(i) \ |
| 2266 | ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ |
| 2267 | (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) |
| 2268 | |
| 2269 | |
| 2270 | /* ------------------------ Operations on bin maps ----------------------- */ |
| 2271 | |
| 2272 | /* bit corresponding to given index */ |
| 2273 | #define idx2bit(i) ((binmap_t)(1) << (i)) |
| 2274 | |
| 2275 | /* Mark/Clear bits with given index */ |
| 2276 | #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) |
| 2277 | #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) |
| 2278 | #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) |
| 2279 | |
| 2280 | #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) |
| 2281 | #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) |
| 2282 | #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) |
| 2283 | |
| 2284 | /* index corresponding to given bit */ |
| 2285 | |
| 2286 | #if defined(__GNUC__) && defined(i386) |
| 2287 | #define compute_bit2idx(X, I)\ |
| 2288 | {\ |
| 2289 | unsigned int J;\ |
| 2290 | __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\ |
| 2291 | I = (bindex_t)J;\ |
| 2292 | } |
| 2293 | |
| 2294 | #else /* GNUC */ |
| 2295 | #if USE_BUILTIN_FFS |
| 2296 | #define compute_bit2idx(X, I) I = ffs(X)-1 |
| 2297 | |
| 2298 | #else /* USE_BUILTIN_FFS */ |
| 2299 | #define compute_bit2idx(X, I)\ |
| 2300 | {\ |
| 2301 | unsigned int Y = X - 1;\ |
| 2302 | unsigned int K = Y >> (16-4) & 16;\ |
| 2303 | unsigned int N = K; Y >>= K;\ |
| 2304 | N += K = Y >> (8-3) & 8; Y >>= K;\ |
| 2305 | N += K = Y >> (4-2) & 4; Y >>= K;\ |
| 2306 | N += K = Y >> (2-1) & 2; Y >>= K;\ |
| 2307 | N += K = Y >> (1-0) & 1; Y >>= K;\ |
| 2308 | I = (bindex_t)(N + Y);\ |
| 2309 | } |
| 2310 | #endif /* USE_BUILTIN_FFS */ |
| 2311 | #endif /* GNUC */ |
| 2312 | |
| 2313 | /* isolate the least set bit of a bitmap */ |
| 2314 | #define least_bit(x) ((x) & -(x)) |
| 2315 | |
| 2316 | /* mask with all bits to left of least bit of x on */ |
| 2317 | #define left_bits(x) ((x<<1) | -(x<<1)) |
| 2318 | |
| 2319 | /* mask with all bits to left of or equal to least bit of x on */ |
| 2320 | #define same_or_left_bits(x) ((x) | -(x)) |
| 2321 | |
| 2322 | |
| 2323 | /* ----------------------- Runtime Check Support ------------------------- */ |
| 2324 | |
| 2325 | /* |
| 2326 | For security, the main invariant is that malloc/free/etc never |
| 2327 | writes to a static address other than malloc_state, unless static |
| 2328 | malloc_state itself has been corrupted, which cannot occur via |
| 2329 | malloc (because of these checks). In essence this means that we |
| 2330 | believe all pointers, sizes, maps etc held in malloc_state, but |
| 2331 | check all of those linked or offsetted from other embedded data |
| 2332 | structures. These checks are interspersed with main code in a way |
| 2333 | that tends to minimize their run-time cost. |
| 2334 | |
| 2335 | When FOOTERS is defined, in addition to range checking, we also |
| 2336 | verify footer fields of inuse chunks, which can be used guarantee |
| 2337 | that the mstate controlling malloc/free is intact. This is a |
| 2338 | streamlined version of the approach described by William Robertson |
| 2339 | et al in "Run-time Detection of Heap-based Overflows" LISA'03 |
| 2340 | http://www.usenix.org/events/lisa03/tech/robertson.html The footer |
| 2341 | of an inuse chunk holds the xor of its mstate and a random seed, |
| 2342 | that is checked upon calls to free() and realloc(). This is |
| 2343 | (probablistically) unguessable from outside the program, but can be |
| 2344 | computed by any code successfully malloc'ing any chunk, so does not |
| 2345 | itself provide protection against code that has already broken |
| 2346 | security through some other means. Unlike Robertson et al, we |
| 2347 | always dynamically check addresses of all offset chunks (previous, |
| 2348 | next, etc). This turns out to be cheaper than relying on hashes. |
| 2349 | */ |
| 2350 | |
| 2351 | #if !INSECURE |
| 2352 | /* Check if address a is at least as high as any from MORECORE or MMAP */ |
| 2353 | #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) |
| 2354 | /* Check if address of next chunk n is higher than base chunk p */ |
| 2355 | #define ok_next(p, n) ((char*)(p) < (char*)(n)) |
| 2356 | /* Check if p has its cinuse bit on */ |
| 2357 | #define ok_cinuse(p) cinuse(p) |
| 2358 | /* Check if p has its pinuse bit on */ |
| 2359 | #define ok_pinuse(p) pinuse(p) |
| 2360 | |
| 2361 | #else /* !INSECURE */ |
| 2362 | #define ok_address(M, a) (1) |
| 2363 | #define ok_next(b, n) (1) |
| 2364 | #define ok_cinuse(p) (1) |
| 2365 | #define ok_pinuse(p) (1) |
| 2366 | #endif /* !INSECURE */ |
| 2367 | |
| 2368 | #if (FOOTERS && !INSECURE) |
| 2369 | /* Check if (alleged) mstate m has expected magic field */ |
| 2370 | #define ok_magic(M) ((M)->magic == mparams.magic) |
| 2371 | #else /* (FOOTERS && !INSECURE) */ |
| 2372 | #define ok_magic(M) (1) |
| 2373 | #endif /* (FOOTERS && !INSECURE) */ |
| 2374 | |
| 2375 | |
| 2376 | /* In gcc, use __builtin_expect to minimize impact of checks */ |
| 2377 | #if !INSECURE |
| 2378 | #if defined(__GNUC__) && __GNUC__ >= 3 |
| 2379 | #define RTCHECK(e) __builtin_expect(e, 1) |
| 2380 | #else /* GNUC */ |
| 2381 | #define RTCHECK(e) (e) |
| 2382 | #endif /* GNUC */ |
| 2383 | #else /* !INSECURE */ |
| 2384 | #define RTCHECK(e) (1) |
| 2385 | #endif /* !INSECURE */ |
| 2386 | |
| 2387 | /* macros to set up inuse chunks with or without footers */ |
| 2388 | |
| 2389 | #if !FOOTERS |
| 2390 | |
| 2391 | #define mark_inuse_foot(M,p,s) |
| 2392 | |
| 2393 | /* Set cinuse bit and pinuse bit of next chunk */ |
| 2394 | #define set_inuse(M,p,s)\ |
| 2395 | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ |
| 2396 | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) |
| 2397 | |
| 2398 | /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ |
| 2399 | #define set_inuse_and_pinuse(M,p,s)\ |
| 2400 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
| 2401 | ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) |
| 2402 | |
| 2403 | /* Set size, cinuse and pinuse bit of this chunk */ |
| 2404 | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ |
| 2405 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) |
| 2406 | |
| 2407 | #else /* FOOTERS */ |
| 2408 | |
| 2409 | /* Set foot of inuse chunk to be xor of mstate and seed */ |
| 2410 | #define mark_inuse_foot(M,p,s)\ |
| 2411 | (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) |
| 2412 | |
| 2413 | #define get_mstate_for(p)\ |
| 2414 | ((mstate)(((mchunkptr)((char*)(p) +\ |
| 2415 | (chunksize(p))))->prev_foot ^ mparams.magic)) |
| 2416 | |
| 2417 | #define set_inuse(M,p,s)\ |
| 2418 | ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ |
| 2419 | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ |
| 2420 | mark_inuse_foot(M,p,s)) |
| 2421 | |
| 2422 | #define set_inuse_and_pinuse(M,p,s)\ |
| 2423 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
| 2424 | (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ |
| 2425 | mark_inuse_foot(M,p,s)) |
| 2426 | |
| 2427 | #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ |
| 2428 | ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ |
| 2429 | mark_inuse_foot(M, p, s)) |
| 2430 | |
| 2431 | #endif /* !FOOTERS */ |
| 2432 | |
| 2433 | /* ---------------------------- setting mparams -------------------------- */ |
| 2434 | |
| 2435 | /* Initialize mparams */ |
| 2436 | static int init_mparams(void) { |
| 2437 | if (mparams.page_size == 0) { |
| 2438 | size_t s; |
| 2439 | |
| 2440 | mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; |
| 2441 | mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; |
| 2442 | #if MORECORE_CONTIGUOUS |
| 2443 | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; |
| 2444 | #else /* MORECORE_CONTIGUOUS */ |
| 2445 | mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; |
| 2446 | #endif /* MORECORE_CONTIGUOUS */ |
| 2447 | |
| 2448 | #if (FOOTERS && !INSECURE) |
| 2449 | { |
| 2450 | #if USE_DEV_RANDOM |
| 2451 | int fd; |
| 2452 | unsigned char buf[sizeof(size_t)]; |
| 2453 | /* Try to use /dev/urandom, else fall back on using time */ |
| 2454 | if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && |
| 2455 | read(fd, buf, sizeof(buf)) == sizeof(buf)) { |
| 2456 | s = *((size_t *) buf); |
| 2457 | close(fd); |
| 2458 | } |
| 2459 | else |
| 2460 | #endif /* USE_DEV_RANDOM */ |
| 2461 | s = (size_t)(time(0) ^ (size_t)0x55555555U); |
| 2462 | |
| 2463 | s |= (size_t)8U; /* ensure nonzero */ |
| 2464 | s &= ~(size_t)7U; /* improve chances of fault for bad values */ |
| 2465 | |
| 2466 | } |
| 2467 | #else /* (FOOTERS && !INSECURE) */ |
| 2468 | s = (size_t)0x58585858U; |
| 2469 | #endif /* (FOOTERS && !INSECURE) */ |
| 2470 | ACQUIRE_MAGIC_INIT_LOCK(); |
| 2471 | if (mparams.magic == 0) { |
| 2472 | mparams.magic = s; |
| 2473 | /* Set up lock for main malloc area */ |
| 2474 | INITIAL_LOCK(&gm->mutex); |
| 2475 | gm->mflags = mparams.default_mflags; |
| 2476 | } |
| 2477 | RELEASE_MAGIC_INIT_LOCK(); |
| 2478 | |
| 2479 | #ifndef WIN32 |
| 2480 | mparams.page_size = malloc_getpagesize; |
| 2481 | mparams.granularity = ((DEFAULT_GRANULARITY != 0)? |
| 2482 | DEFAULT_GRANULARITY : mparams.page_size); |
| 2483 | #else /* WIN32 */ |
| 2484 | { |
| 2485 | SYSTEM_INFO system_info; |
| 2486 | GetSystemInfo(&system_info); |
| 2487 | mparams.page_size = system_info.dwPageSize; |
| 2488 | mparams.granularity = system_info.dwAllocationGranularity; |
| 2489 | } |
| 2490 | #endif /* WIN32 */ |
| 2491 | |
| 2492 | /* Sanity-check configuration: |
| 2493 | size_t must be unsigned and as wide as pointer type. |
| 2494 | ints must be at least 4 bytes. |
| 2495 | alignment must be at least 8. |
| 2496 | Alignment, min chunk size, and page size must all be powers of 2. |
| 2497 | */ |
| 2498 | if ((sizeof(size_t) != sizeof(char*)) || |
| 2499 | (MAX_SIZE_T < MIN_CHUNK_SIZE) || |
| 2500 | (sizeof(int) < 4) || |
| 2501 | (MALLOC_ALIGNMENT < (size_t)8U) || |
| 2502 | ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || |
| 2503 | ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || |
| 2504 | ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || |
| 2505 | ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) |
| 2506 | ABORT; |
| 2507 | } |
| 2508 | return 0; |
| 2509 | } |
| 2510 | |
| 2511 | /* support for mallopt */ |
| 2512 | static int change_mparam(int param_number, int value) { |
| 2513 | size_t val = (size_t)value; |
| 2514 | init_mparams(); |
| 2515 | switch(param_number) { |
| 2516 | case M_TRIM_THRESHOLD: |
| 2517 | mparams.trim_threshold = val; |
| 2518 | return 1; |
| 2519 | case M_GRANULARITY: |
| 2520 | if (val >= mparams.page_size && ((val & (val-1)) == 0)) { |
| 2521 | mparams.granularity = val; |
| 2522 | return 1; |
| 2523 | } |
| 2524 | else |
| 2525 | return 0; |
| 2526 | case M_MMAP_THRESHOLD: |
| 2527 | mparams.mmap_threshold = val; |
| 2528 | return 1; |
| 2529 | default: |
| 2530 | return 0; |
| 2531 | } |
| 2532 | } |
| 2533 | |
| 2534 | #if DEBUG |
| 2535 | /* ------------------------- Debugging Support --------------------------- */ |
| 2536 | |
| 2537 | /* Check properties of any chunk, whether free, inuse, mmapped etc */ |
| 2538 | static void do_check_any_chunk(mstate m, mchunkptr p) { |
| 2539 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
| 2540 | assert(ok_address(m, p)); |
| 2541 | } |
| 2542 | |
| 2543 | /* Check properties of top chunk */ |
| 2544 | static void do_check_top_chunk(mstate m, mchunkptr p) { |
| 2545 | msegmentptr sp = segment_holding(m, (char*)p); |
| 2546 | size_t sz = chunksize(p); |
| 2547 | assert(sp != 0); |
| 2548 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
| 2549 | assert(ok_address(m, p)); |
| 2550 | assert(sz == m->topsize); |
| 2551 | assert(sz > 0); |
| 2552 | assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); |
| 2553 | assert(pinuse(p)); |
| 2554 | assert(!next_pinuse(p)); |
| 2555 | } |
| 2556 | |
| 2557 | /* Check properties of (inuse) mmapped chunks */ |
| 2558 | static void do_check_mmapped_chunk(mstate m, mchunkptr p) { |
| 2559 | size_t sz = chunksize(p); |
| 2560 | size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); |
| 2561 | assert(is_mmapped(p)); |
| 2562 | assert(use_mmap(m)); |
| 2563 | assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); |
| 2564 | assert(ok_address(m, p)); |
| 2565 | assert(!is_small(sz)); |
| 2566 | assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); |
| 2567 | assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); |
| 2568 | assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); |
| 2569 | } |
| 2570 | |
| 2571 | /* Check properties of inuse chunks */ |
| 2572 | static void do_check_inuse_chunk(mstate m, mchunkptr p) { |
| 2573 | do_check_any_chunk(m, p); |
| 2574 | assert(cinuse(p)); |
| 2575 | assert(next_pinuse(p)); |
| 2576 | /* If not pinuse and not mmapped, previous chunk has OK offset */ |
| 2577 | assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); |
| 2578 | if (is_mmapped(p)) |
| 2579 | do_check_mmapped_chunk(m, p); |
| 2580 | } |
| 2581 | |
| 2582 | /* Check properties of free chunks */ |
| 2583 | static void do_check_free_chunk(mstate m, mchunkptr p) { |
| 2584 | size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); |
| 2585 | mchunkptr next = chunk_plus_offset(p, sz); |
| 2586 | do_check_any_chunk(m, p); |
| 2587 | assert(!cinuse(p)); |
| 2588 | assert(!next_pinuse(p)); |
| 2589 | assert (!is_mmapped(p)); |
| 2590 | if (p != m->dv && p != m->top) { |
| 2591 | if (sz >= MIN_CHUNK_SIZE) { |
| 2592 | assert((sz & CHUNK_ALIGN_MASK) == 0); |
| 2593 | assert(is_aligned(chunk2mem(p))); |
| 2594 | assert(next->prev_foot == sz); |
| 2595 | assert(pinuse(p)); |
| 2596 | assert (next == m->top || cinuse(next)); |
| 2597 | assert(p->fd->bk == p); |
| 2598 | assert(p->bk->fd == p); |
| 2599 | } |
| 2600 | else /* markers are always of size SIZE_T_SIZE */ |
| 2601 | assert(sz == SIZE_T_SIZE); |
| 2602 | } |
| 2603 | } |
| 2604 | |
| 2605 | /* Check properties of malloced chunks at the point they are malloced */ |
| 2606 | static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { |
| 2607 | if (mem != 0) { |
| 2608 | mchunkptr p = mem2chunk(mem); |
| 2609 | size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); |
| 2610 | do_check_inuse_chunk(m, p); |
| 2611 | assert((sz & CHUNK_ALIGN_MASK) == 0); |
| 2612 | assert(sz >= MIN_CHUNK_SIZE); |
| 2613 | assert(sz >= s); |
| 2614 | /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ |
| 2615 | assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); |
| 2616 | } |
| 2617 | } |
| 2618 | |
| 2619 | /* Check a tree and its subtrees. */ |
| 2620 | static void do_check_tree(mstate m, tchunkptr t) { |
| 2621 | tchunkptr head = 0; |
| 2622 | tchunkptr u = t; |
| 2623 | bindex_t tindex = t->index; |
| 2624 | size_t tsize = chunksize(t); |
| 2625 | bindex_t idx; |
| 2626 | compute_tree_index(tsize, idx); |
| 2627 | assert(tindex == idx); |
| 2628 | assert(tsize >= MIN_LARGE_SIZE); |
| 2629 | assert(tsize >= minsize_for_tree_index(idx)); |
| 2630 | assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); |
| 2631 | |
| 2632 | do { /* traverse through chain of same-sized nodes */ |
| 2633 | do_check_any_chunk(m, ((mchunkptr)u)); |
| 2634 | assert(u->index == tindex); |
| 2635 | assert(chunksize(u) == tsize); |
| 2636 | assert(!cinuse(u)); |
| 2637 | assert(!next_pinuse(u)); |
| 2638 | assert(u->fd->bk == u); |
| 2639 | assert(u->bk->fd == u); |
| 2640 | if (u->parent == 0) { |
| 2641 | assert(u->child[0] == 0); |
| 2642 | assert(u->child[1] == 0); |
| 2643 | } |
| 2644 | else { |
| 2645 | assert(head == 0); /* only one node on chain has parent */ |
| 2646 | head = u; |
| 2647 | assert(u->parent != u); |
| 2648 | assert (u->parent->child[0] == u || |
| 2649 | u->parent->child[1] == u || |
| 2650 | *((tbinptr*)(u->parent)) == u); |
| 2651 | if (u->child[0] != 0) { |
| 2652 | assert(u->child[0]->parent == u); |
| 2653 | assert(u->child[0] != u); |
| 2654 | do_check_tree(m, u->child[0]); |
| 2655 | } |
| 2656 | if (u->child[1] != 0) { |
| 2657 | assert(u->child[1]->parent == u); |
| 2658 | assert(u->child[1] != u); |
| 2659 | do_check_tree(m, u->child[1]); |
| 2660 | } |
| 2661 | if (u->child[0] != 0 && u->child[1] != 0) { |
| 2662 | assert(chunksize(u->child[0]) < chunksize(u->child[1])); |
| 2663 | } |
| 2664 | } |
| 2665 | u = u->fd; |
| 2666 | } while (u != t); |
| 2667 | assert(head != 0); |
| 2668 | } |
| 2669 | |
| 2670 | /* Check all the chunks in a treebin. */ |
| 2671 | static void do_check_treebin(mstate m, bindex_t i) { |
| 2672 | tbinptr* tb = treebin_at(m, i); |
| 2673 | tchunkptr t = *tb; |
| 2674 | int empty = (m->treemap & (1U << i)) == 0; |
| 2675 | if (t == 0) |
| 2676 | assert(empty); |
| 2677 | if (!empty) |
| 2678 | do_check_tree(m, t); |
| 2679 | } |
| 2680 | |
| 2681 | /* Check all the chunks in a smallbin. */ |
| 2682 | static void do_check_smallbin(mstate m, bindex_t i) { |
| 2683 | sbinptr b = smallbin_at(m, i); |
| 2684 | mchunkptr p = b->bk; |
| 2685 | unsigned int empty = (m->smallmap & (1U << i)) == 0; |
| 2686 | if (p == b) |
| 2687 | assert(empty); |
| 2688 | if (!empty) { |
| 2689 | for (; p != b; p = p->bk) { |
| 2690 | size_t size = chunksize(p); |
| 2691 | mchunkptr q; |
| 2692 | /* each chunk claims to be free */ |
| 2693 | do_check_free_chunk(m, p); |
| 2694 | /* chunk belongs in bin */ |
| 2695 | assert(small_index(size) == i); |
| 2696 | assert(p->bk == b || chunksize(p->bk) == chunksize(p)); |
| 2697 | /* chunk is followed by an inuse chunk */ |
| 2698 | q = next_chunk(p); |
| 2699 | if (q->head != FENCEPOST_HEAD) |
| 2700 | do_check_inuse_chunk(m, q); |
| 2701 | } |
| 2702 | } |
| 2703 | } |
| 2704 | |
| 2705 | /* Find x in a bin. Used in other check functions. */ |
| 2706 | static int bin_find(mstate m, mchunkptr x) { |
| 2707 | size_t size = chunksize(x); |
| 2708 | if (is_small(size)) { |
| 2709 | bindex_t sidx = small_index(size); |
| 2710 | sbinptr b = smallbin_at(m, sidx); |
| 2711 | if (smallmap_is_marked(m, sidx)) { |
| 2712 | mchunkptr p = b; |
| 2713 | do { |
| 2714 | if (p == x) |
| 2715 | return 1; |
| 2716 | } while ((p = p->fd) != b); |
| 2717 | } |
| 2718 | } |
| 2719 | else { |
| 2720 | bindex_t tidx; |
| 2721 | compute_tree_index(size, tidx); |
| 2722 | if (treemap_is_marked(m, tidx)) { |
| 2723 | tchunkptr t = *treebin_at(m, tidx); |
| 2724 | size_t sizebits = size << leftshift_for_tree_index(tidx); |
| 2725 | while (t != 0 && chunksize(t) != size) { |
| 2726 | t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; |
| 2727 | sizebits <<= 1; |
| 2728 | } |
| 2729 | if (t != 0) { |
| 2730 | tchunkptr u = t; |
| 2731 | do { |
| 2732 | if (u == (tchunkptr)x) |
| 2733 | return 1; |
| 2734 | } while ((u = u->fd) != t); |
| 2735 | } |
| 2736 | } |
| 2737 | } |
| 2738 | return 0; |
| 2739 | } |
| 2740 | |
| 2741 | /* Traverse each chunk and check it; return total */ |
| 2742 | static size_t traverse_and_check(mstate m) { |
| 2743 | size_t sum = 0; |
| 2744 | if (is_initialized(m)) { |
| 2745 | msegmentptr s = &m->seg; |
| 2746 | sum += m->topsize + TOP_FOOT_SIZE; |
| 2747 | while (s != 0) { |
| 2748 | mchunkptr q = align_as_chunk(s->base); |
| 2749 | mchunkptr lastq = 0; |
| 2750 | assert(pinuse(q)); |
| 2751 | while (segment_holds(s, q) && |
| 2752 | q != m->top && q->head != FENCEPOST_HEAD) { |
| 2753 | sum += chunksize(q); |
| 2754 | if (cinuse(q)) { |
| 2755 | assert(!bin_find(m, q)); |
| 2756 | do_check_inuse_chunk(m, q); |
| 2757 | } |
| 2758 | else { |
| 2759 | assert(q == m->dv || bin_find(m, q)); |
| 2760 | assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ |
| 2761 | do_check_free_chunk(m, q); |
| 2762 | } |
| 2763 | lastq = q; |
| 2764 | q = next_chunk(q); |
| 2765 | } |
| 2766 | s = s->next; |
| 2767 | } |
| 2768 | } |
| 2769 | return sum; |
| 2770 | } |
| 2771 | |
| 2772 | /* Check all properties of malloc_state. */ |
| 2773 | static void do_check_malloc_state(mstate m) { |
| 2774 | bindex_t i; |
| 2775 | size_t total; |
| 2776 | /* check bins */ |
| 2777 | for (i = 0; i < NSMALLBINS; ++i) |
| 2778 | do_check_smallbin(m, i); |
| 2779 | for (i = 0; i < NTREEBINS; ++i) |
| 2780 | do_check_treebin(m, i); |
| 2781 | |
| 2782 | if (m->dvsize != 0) { /* check dv chunk */ |
| 2783 | do_check_any_chunk(m, m->dv); |
| 2784 | assert(m->dvsize == chunksize(m->dv)); |
| 2785 | assert(m->dvsize >= MIN_CHUNK_SIZE); |
| 2786 | assert(bin_find(m, m->dv) == 0); |
| 2787 | } |
| 2788 | |
| 2789 | if (m->top != 0) { /* check top chunk */ |
| 2790 | do_check_top_chunk(m, m->top); |
| 2791 | assert(m->topsize == chunksize(m->top)); |
| 2792 | assert(m->topsize > 0); |
| 2793 | assert(bin_find(m, m->top) == 0); |
| 2794 | } |
| 2795 | |
| 2796 | total = traverse_and_check(m); |
| 2797 | assert(total <= m->footprint); |
| 2798 | assert(m->footprint <= m->max_footprint); |
| 2799 | } |
| 2800 | #endif /* DEBUG */ |
| 2801 | |
| 2802 | /* ----------------------------- statistics ------------------------------ */ |
| 2803 | |
| 2804 | #if !NO_MALLINFO |
| 2805 | static struct mallinfo internal_mallinfo(mstate m) { |
| 2806 | struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| 2807 | if (!PREACTION(m)) { |
| 2808 | check_malloc_state(m); |
| 2809 | if (is_initialized(m)) { |
| 2810 | size_t nfree = SIZE_T_ONE; /* top always free */ |
| 2811 | size_t mfree = m->topsize + TOP_FOOT_SIZE; |
| 2812 | size_t sum = mfree; |
| 2813 | msegmentptr s = &m->seg; |
| 2814 | while (s != 0) { |
| 2815 | mchunkptr q = align_as_chunk(s->base); |
| 2816 | while (segment_holds(s, q) && |
| 2817 | q != m->top && q->head != FENCEPOST_HEAD) { |
| 2818 | size_t sz = chunksize(q); |
| 2819 | sum += sz; |
| 2820 | if (!cinuse(q)) { |
| 2821 | mfree += sz; |
| 2822 | ++nfree; |
| 2823 | } |
| 2824 | q = next_chunk(q); |
| 2825 | } |
| 2826 | s = s->next; |
| 2827 | } |
| 2828 | |
| 2829 | nm.arena = sum; |
| 2830 | nm.ordblks = nfree; |
| 2831 | nm.hblkhd = m->footprint - sum; |
| 2832 | nm.usmblks = m->max_footprint; |
| 2833 | nm.uordblks = m->footprint - mfree; |
| 2834 | nm.fordblks = mfree; |
| 2835 | nm.keepcost = m->topsize; |
| 2836 | } |
| 2837 | |
| 2838 | POSTACTION(m); |
| 2839 | } |
| 2840 | return nm; |
| 2841 | } |
| 2842 | #endif /* !NO_MALLINFO */ |
| 2843 | |
| 2844 | static void internal_malloc_stats(mstate m) { |
| 2845 | if (!PREACTION(m)) { |
| 2846 | size_t maxfp = 0; |
| 2847 | size_t fp = 0; |
| 2848 | size_t used = 0; |
| 2849 | check_malloc_state(m); |
| 2850 | if (is_initialized(m)) { |
| 2851 | msegmentptr s = &m->seg; |
| 2852 | maxfp = m->max_footprint; |
| 2853 | fp = m->footprint; |
| 2854 | used = fp - (m->topsize + TOP_FOOT_SIZE); |
| 2855 | |
| 2856 | while (s != 0) { |
| 2857 | mchunkptr q = align_as_chunk(s->base); |
| 2858 | while (segment_holds(s, q) && |
| 2859 | q != m->top && q->head != FENCEPOST_HEAD) { |
| 2860 | if (!cinuse(q)) |
| 2861 | used -= chunksize(q); |
| 2862 | q = next_chunk(q); |
| 2863 | } |
| 2864 | s = s->next; |
| 2865 | } |
| 2866 | } |
| 2867 | |
| 2868 | #ifndef LACKS_STDIO_H |
| 2869 | fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); |
| 2870 | fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); |
| 2871 | fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); |
| 2872 | #endif |
| 2873 | |
| 2874 | POSTACTION(m); |
| 2875 | } |
| 2876 | } |
| 2877 | |
| 2878 | /* ----------------------- Operations on smallbins ----------------------- */ |
| 2879 | |
| 2880 | /* |
| 2881 | Various forms of linking and unlinking are defined as macros. Even |
| 2882 | the ones for trees, which are very long but have very short typical |
| 2883 | paths. This is ugly but reduces reliance on inlining support of |
| 2884 | compilers. |
| 2885 | */ |
| 2886 | |
| 2887 | /* Link a free chunk into a smallbin */ |
| 2888 | #define insert_small_chunk(M, P, S) {\ |
| 2889 | bindex_t I = small_index(S);\ |
| 2890 | mchunkptr B = smallbin_at(M, I);\ |
| 2891 | mchunkptr F = B;\ |
| 2892 | assert(S >= MIN_CHUNK_SIZE);\ |
| 2893 | if (!smallmap_is_marked(M, I))\ |
| 2894 | mark_smallmap(M, I);\ |
| 2895 | else if (RTCHECK(ok_address(M, B->fd)))\ |
| 2896 | F = B->fd;\ |
| 2897 | else {\ |
| 2898 | CORRUPTION_ERROR_ACTION(M);\ |
| 2899 | }\ |
| 2900 | B->fd = P;\ |
| 2901 | F->bk = P;\ |
| 2902 | P->fd = F;\ |
| 2903 | P->bk = B;\ |
| 2904 | } |
| 2905 | |
| 2906 | /* Unlink a chunk from a smallbin */ |
| 2907 | #define unlink_small_chunk(M, P, S) {\ |
| 2908 | mchunkptr F = P->fd;\ |
| 2909 | mchunkptr B = P->bk;\ |
| 2910 | bindex_t I = small_index(S);\ |
| 2911 | assert(P != B);\ |
| 2912 | assert(P != F);\ |
| 2913 | assert(chunksize(P) == small_index2size(I));\ |
| 2914 | if (F == B)\ |
| 2915 | clear_smallmap(M, I);\ |
| 2916 | else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ |
| 2917 | (B == smallbin_at(M,I) || ok_address(M, B)))) {\ |
| 2918 | F->bk = B;\ |
| 2919 | B->fd = F;\ |
| 2920 | }\ |
| 2921 | else {\ |
| 2922 | CORRUPTION_ERROR_ACTION(M);\ |
| 2923 | }\ |
| 2924 | } |
| 2925 | |
| 2926 | /* Unlink the first chunk from a smallbin */ |
| 2927 | #define unlink_first_small_chunk(M, B, P, I) {\ |
| 2928 | mchunkptr F = P->fd;\ |
| 2929 | assert(P != B);\ |
| 2930 | assert(P != F);\ |
| 2931 | assert(chunksize(P) == small_index2size(I));\ |
| 2932 | if (B == F)\ |
| 2933 | clear_smallmap(M, I);\ |
| 2934 | else if (RTCHECK(ok_address(M, F))) {\ |
| 2935 | B->fd = F;\ |
| 2936 | F->bk = B;\ |
| 2937 | }\ |
| 2938 | else {\ |
| 2939 | CORRUPTION_ERROR_ACTION(M);\ |
| 2940 | }\ |
| 2941 | } |
| 2942 | |
| 2943 | /* Replace dv node, binning the old one */ |
| 2944 | /* Used only when dvsize known to be small */ |
| 2945 | #define replace_dv(M, P, S) {\ |
| 2946 | size_t DVS = M->dvsize;\ |
| 2947 | if (DVS != 0) {\ |
| 2948 | mchunkptr DV = M->dv;\ |
| 2949 | assert(is_small(DVS));\ |
| 2950 | insert_small_chunk(M, DV, DVS);\ |
| 2951 | }\ |
| 2952 | M->dvsize = S;\ |
| 2953 | M->dv = P;\ |
| 2954 | } |
| 2955 | |
| 2956 | /* ------------------------- Operations on trees ------------------------- */ |
| 2957 | |
| 2958 | /* Insert chunk into tree */ |
| 2959 | #define insert_large_chunk(M, X, S) {\ |
| 2960 | tbinptr* H;\ |
| 2961 | bindex_t I;\ |
| 2962 | compute_tree_index(S, I);\ |
| 2963 | H = treebin_at(M, I);\ |
| 2964 | X->index = I;\ |
| 2965 | X->child[0] = X->child[1] = 0;\ |
| 2966 | if (!treemap_is_marked(M, I)) {\ |
| 2967 | mark_treemap(M, I);\ |
| 2968 | *H = X;\ |
| 2969 | X->parent = (tchunkptr)H;\ |
| 2970 | X->fd = X->bk = X;\ |
| 2971 | }\ |
| 2972 | else {\ |
| 2973 | tchunkptr T = *H;\ |
| 2974 | size_t K = S << leftshift_for_tree_index(I);\ |
| 2975 | for (;;) {\ |
| 2976 | if (chunksize(T) != S) {\ |
| 2977 | tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ |
| 2978 | K <<= 1;\ |
| 2979 | if (*C != 0)\ |
| 2980 | T = *C;\ |
| 2981 | else if (RTCHECK(ok_address(M, C))) {\ |
| 2982 | *C = X;\ |
| 2983 | X->parent = T;\ |
| 2984 | X->fd = X->bk = X;\ |
| 2985 | break;\ |
| 2986 | }\ |
| 2987 | else {\ |
| 2988 | CORRUPTION_ERROR_ACTION(M);\ |
| 2989 | break;\ |
| 2990 | }\ |
| 2991 | }\ |
| 2992 | else {\ |
| 2993 | tchunkptr F = T->fd;\ |
| 2994 | if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ |
| 2995 | T->fd = F->bk = X;\ |
| 2996 | X->fd = F;\ |
| 2997 | X->bk = T;\ |
| 2998 | X->parent = 0;\ |
| 2999 | break;\ |
| 3000 | }\ |
| 3001 | else {\ |
| 3002 | CORRUPTION_ERROR_ACTION(M);\ |
| 3003 | break;\ |
| 3004 | }\ |
| 3005 | }\ |
| 3006 | }\ |
| 3007 | }\ |
| 3008 | } |
| 3009 | |
| 3010 | /* |
| 3011 | Unlink steps: |
| 3012 | |
| 3013 | 1. If x is a chained node, unlink it from its same-sized fd/bk links |
| 3014 | and choose its bk node as its replacement. |
| 3015 | 2. If x was the last node of its size, but not a leaf node, it must |
| 3016 | be replaced with a leaf node (not merely one with an open left or |
| 3017 | right), to make sure that lefts and rights of descendents |
| 3018 | correspond properly to bit masks. We use the rightmost descendent |
| 3019 | of x. We could use any other leaf, but this is easy to locate and |
| 3020 | tends to counteract removal of leftmosts elsewhere, and so keeps |
| 3021 | paths shorter than minimally guaranteed. This doesn't loop much |
| 3022 | because on average a node in a tree is near the bottom. |
| 3023 | 3. If x is the base of a chain (i.e., has parent links) relink |
| 3024 | x's parent and children to x's replacement (or null if none). |
| 3025 | */ |
| 3026 | |
| 3027 | #define unlink_large_chunk(M, X) {\ |
| 3028 | tchunkptr XP = X->parent;\ |
| 3029 | tchunkptr R;\ |
| 3030 | if (X->bk != X) {\ |
| 3031 | tchunkptr F = X->fd;\ |
| 3032 | R = X->bk;\ |
| 3033 | if (RTCHECK(ok_address(M, F))) {\ |
| 3034 | F->bk = R;\ |
| 3035 | R->fd = F;\ |
| 3036 | }\ |
| 3037 | else {\ |
| 3038 | CORRUPTION_ERROR_ACTION(M);\ |
| 3039 | }\ |
| 3040 | }\ |
| 3041 | else {\ |
| 3042 | tchunkptr* RP;\ |
| 3043 | if (((R = *(RP = &(X->child[1]))) != 0) ||\ |
| |