Jörg Hohensohn | 6a4e4c8 | 2003-11-30 11:37:43 +0000 | [diff] [blame] | 1 | // minimalistic monitor |
| 2 | // to be loaded with the UART boot feature |
| 3 | // capable of reading and writing bytes, commanded by UART |
| 4 | |
| 5 | #include "sh7034.h" |
| 6 | #include "minimon.h" |
| 7 | |
| 8 | // scalar types |
| 9 | typedef unsigned char UINT8; |
| 10 | typedef unsigned short UINT16; |
| 11 | typedef unsigned long UINT32; |
| 12 | |
| 13 | typedef void(*tpFunc)(void); // type for exec |
| 14 | typedef int(*tpMain)(void); // type for start vector to main() |
| 15 | |
| 16 | |
| 17 | // prototypes |
| 18 | int main(void); |
| 19 | |
| 20 | // our binary has to start with a vector to the entry point |
| 21 | tpMain start_vector[] __attribute__ ((section (".startvector"))) = {main}; |
| 22 | |
| 23 | |
Thomas Jarosch | fdd4aef | 2015-01-05 18:44:36 +0100 | [diff] [blame] | 24 | static UINT8 uart_read(void) |
Jörg Hohensohn | 6a4e4c8 | 2003-11-30 11:37:43 +0000 | [diff] [blame] | 25 | { |
| 26 | UINT8 byte; |
| 27 | while (!(SSR1 & SCI_RDRF)); // wait for char to be available |
| 28 | byte = RDR1; |
| 29 | SSR1 &= ~SCI_RDRF; |
| 30 | return byte; |
| 31 | } |
| 32 | |
| 33 | |
Thomas Jarosch | fdd4aef | 2015-01-05 18:44:36 +0100 | [diff] [blame] | 34 | static void uart_write(UINT8 byte) |
Jörg Hohensohn | 6a4e4c8 | 2003-11-30 11:37:43 +0000 | [diff] [blame] | 35 | { |
| 36 | while (!(SSR1 & SCI_TDRE)); // wait for transmit buffer empty |
| 37 | TDR1 = byte; |
| 38 | SSR1 &= ~SCI_TDRE; |
| 39 | } |
| 40 | |
| 41 | |
| 42 | int main(void) |
| 43 | { |
| 44 | UINT8 cmd; |
| 45 | UINT32 addr; |
| 46 | UINT32 size; |
| 47 | UINT32 content; |
| 48 | volatile UINT8* paddr = 0; |
Jens Arnold | 601afcb | 2008-10-30 00:34:43 +0000 | [diff] [blame] | 49 | volatile UINT8* pflash = 0; // flash base address |
Jörg Hohensohn | 6a4e4c8 | 2003-11-30 11:37:43 +0000 | [diff] [blame] | 50 | |
| 51 | while (1) |
| 52 | { |
| 53 | cmd = uart_read(); |
| 54 | switch (cmd) |
| 55 | { |
| 56 | case BAUDRATE: |
| 57 | content = uart_read(); |
| 58 | uart_write(cmd); // acknowledge by returning the command value |
| 59 | while (!(SSR1 & SCI_TEND)); // wait for empty shift register, before changing baudrate |
| 60 | BRR1 = content; |
| 61 | break; |
| 62 | |
| 63 | case ADDRESS: |
| 64 | addr = (uart_read() << 24) | (uart_read() << 16) | (uart_read() << 8) | uart_read(); |
| 65 | paddr = (UINT8*)addr; |
| 66 | pflash = (UINT8*)(addr & 0xFFF80000); // round down to 512k align |
| 67 | uart_write(cmd); // acknowledge by returning the command value |
| 68 | break; |
| 69 | |
| 70 | case BYTE_READ: |
| 71 | content = *paddr++; |
| 72 | uart_write(content); // the content is the ack |
| 73 | break; |
| 74 | |
| 75 | case BYTE_WRITE: |
| 76 | content = uart_read(); |
| 77 | *paddr++ = content; |
| 78 | uart_write(cmd); // acknowledge by returning the command value |
| 79 | break; |
| 80 | |
| 81 | case BYTE_READ16: |
| 82 | size = 16; |
| 83 | while (size--) |
| 84 | { |
| 85 | content = *paddr++; |
| 86 | uart_write(content); // the content is the ack |
| 87 | } |
| 88 | break; |
| 89 | |
| 90 | case BYTE_WRITE16: |
| 91 | size = 16; |
| 92 | while (size--) |
| 93 | { |
| 94 | content = uart_read(); |
| 95 | *paddr++ = content; |
| 96 | } |
| 97 | uart_write(cmd); // acknowledge by returning the command value |
| 98 | break; |
| 99 | |
| 100 | case BYTE_FLASH: |
| 101 | content = uart_read(); |
| 102 | pflash[0x5555] = 0xAA; // set flash to command mode |
| 103 | pflash[0x2AAA] = 0x55; |
| 104 | pflash[0x5555] = 0xA0; // byte program command |
| 105 | *paddr++ = content; |
| 106 | uart_write(cmd); // acknowledge by returning the command value |
| 107 | break; |
| 108 | |
| 109 | case BYTE_FLASH16: |
| 110 | size = 16; |
| 111 | while (size--) |
| 112 | { |
| 113 | content = uart_read(); |
| 114 | pflash[0x5555] = 0xAA; // set flash to command mode |
| 115 | pflash[0x2AAA] = 0x55; |
| 116 | pflash[0x5555] = 0xA0; // byte program command |
| 117 | *paddr++ = content; |
| 118 | } |
| 119 | uart_write(cmd); // acknowledge by returning the command value |
| 120 | break; |
| 121 | |
| 122 | case HALFWORD_READ: |
| 123 | content = *(UINT16*)paddr; |
| 124 | paddr += 2; |
| 125 | uart_write(content >> 8); // highbyte |
| 126 | uart_write(content & 0xFF); // lowbyte |
| 127 | break; |
| 128 | |
| 129 | case HALFWORD_WRITE: |
| 130 | content = uart_read() << 8 | uart_read(); |
| 131 | *(UINT16*)paddr = content; |
| 132 | paddr += 2; |
| 133 | uart_write(cmd); // acknowledge by returning the command value |
| 134 | break; |
| 135 | |
| 136 | case EXECUTE: |
| 137 | { |
| 138 | tpFunc pFunc = (tpFunc)paddr; |
| 139 | pFunc(); |
| 140 | uart_write(cmd); // acknowledge by returning the command value |
| 141 | } |
| 142 | break; |
| 143 | |
| 144 | |
| 145 | default: |
| 146 | { |
| 147 | volatile UINT16* pPortB = (UINT16*)0x05FFFFC2; |
| 148 | *pPortB |= 1 << 6; // bit 6 is red LED on |
| 149 | uart_write(~cmd); // error acknowledge |
| 150 | } |
| 151 | |
| 152 | } // case |
| 153 | } |
| 154 | |
| 155 | return 0; |
| 156 | } |